高速流条件下で発生する水面波と河床波に関する研究

国立研究開発法人 土木研究所 寒地土木研究所 寒地河川チーム 〇岩崎 理樹 井上 卓也 矢部 浩規

急流河川における洪水時の流れは高速流となり、河川地形や堤防を著しく変形させる可能性 がある。特に、近年高速流条件化においては、河床に反砂堆が発生すると同時に、水面が急峻 に切り立つ三角波が形成されることが明らかにされており、橋梁、堤防、河川構造物に対する 影響が懸念されている。本論文は、このような水面波と河床波の発生条件や特徴について報告 するものである。

キーワード: 急流河川、高速流、三角波、反砂碓

1. はじめに

我が国の河川は一般的に河床勾配が急であるために、 流速が増大しやすい傾向にあり、洪水時には流速が3m/s 程度以上となる、いわゆる高速流がしばしば発生する¹ ²。流速の増大は、護岸ブロックや根固め工などの河川 構造物に作用する流体力を著しく増加させ、構造物の滑 動や転動を招くことで構造物の被災要因となる。また、 このような条件下においては河床面に作用するせん断力 も増加し、土砂移動を活発化させることで、構造物周辺 からの土砂の抜けだしなどが発生し、構造物の支持力を 低下させる。このように、高速流は河川構造物の安定性 を低下させる可能性があるため、構造物の設計・管理を 行う際には、発生しうる流速や発生箇所を推定し、適切 な構造物重量を確保するなどの対策が必要となる。

一方、高速流がもたらすもう一つの特徴は、フルード 数の増大に伴い河川流が射流流れとなり、水面の大規模 変動を招くことである。このような水面変動の例として は、床止め工下流等に発生する跳水などがあげられる。 また、高速流条件下において発生する水面波として、三 角状水面波列が近年注目されている。図-1は、昭和56年 8月北海道豪雨の際に豊平川で観測された三角波の例で ある3。図からわかるように、極めて急峻な形状の一列 の波が発生していることがわかる。三角波は、局所的な 水面・流速の変動をもたらし、堤防、橋梁、河川内構造 物等の安定性に影響を与えることが懸念されるが、床止 め直下に発生するような跳水とは異なり、その発生位置 や発生条件を推定することが難しい。これは、三角波の 発生要因が未だ不明なためである。このように三角波発 生の予測が難しいことと、具体的に構造物等に対してど のような影響を与えるかが不明確であるために、三角波 の存在は河川構造物の設計などには考慮されていないよ うである。

図-1 豊平川の昭和 56 年 8 月洪水での水面波³

このような三角波の発生については、従来河床波に関 する研究からその存在が指摘されてきている45。また、 山田らっは、固定床条件の下で室内水路実験を行い、底 面形状が不規則な凸凹を持つとき、水面に定在波が発達 し、図-1に示すような三角状の水面波が発生することを 示すとともに、その発生機構について理論的な検討を行 っている。一方長谷川らかは、河床不安定性の一種であ る反砂碓と、射流時に発生する水面固有の定在波を斜め 交錯波と定義し、二つの異なる波の波長が一致し共振状 態となったときに、水面が急激に三角状に発達すると同 時に反砂碓も三次元化することを示した。このように、 三角波の発生機構については様々な視点から研究が行わ れているが、河床面の変動、すなわち反砂碓が大きな役 割を担っていると考えられる。しかし、三角波の発生に 着目した実験は数、条件ともに限られており、発生条件 や特徴が十分明らかになったとはいえない。本論文では、 高速流条件下において発生する三角波の発生条件やその 特徴について様々な条件の下に行った室内実験を元に報 告を行うものである。

	水路幅	粒径	勾配	流量	平均水深	フルード数	水路幅	無次元 掃流力
	0.5	1 42	0.0000	15.0	0.045	1 02	11 1	0 154
Num Dum2	0.5	1.42	0.0080	10.2	0.040	1.02	6.2	0.104
Runz	0.5	1.42	0.0080	30.8	0.079	1.04	0.3	0.2/3
Runs	0.5	1.42	0.0145	8. I	0.025	1.30	20.0	0. 155
Run4	0.5	1.42	0.0145	1.8	0.010	1.10	50.0	0.062
Runb	0.5	5.00	0.0180	19.5	0.045	1.31	11.1	0.098
Run6	0.5	5.00	0.0180	26. 7	0.055	1.32	9.1	0. 120
Run7	0.5	5.00	0.0180	42. 9	0. 075	1.34	6. 7	0. 164
Run8	0. 5	5.00	0.0320	10. 3	0. 025	1.66	20. 0	0. 097
Run9	0. 5	5.00	0.0320	21.7	0.040	1. 73	12.5	0. 155
Run10	0.5	5.00	0.0320	30. 7	0.050	1. 76	10. 0	0. 194
Run11	1.0	5.00	0.0150	44. 6	0.050	1. 27	20. 0	0. 091
Run12	1.0	5.00	0.0150	113. 3	0.090	1.34	11. 1	0. 164
Run13	1.0	5.00	0.0150	67.8	0.065	1. 31	15. 4	0. 118
Run14	1.0	5.00	0. 0250	57.5	0.050	1.64	20. 0	0. 152
Run15	1.0	1. 42	0.0110	44. 5	0.050	1.27	20. 0	0. 235
Run16	1.0	1. 42	0.0110	76. 2	0. 070	1. 31	14. 3	0. 329
Run17	1.0	1.42	0.0250	15. 1	0.020	1. 71	50.0	0. 213
Run18	0.5	1.42	0.0303	12.4	0.026	1.89	19. 2	0. 336
Run19	0.5	1.42	0.0303	9.5	0.022	1.86	22. 7	0. 285
Run20	0.5	1.42	0.0250	11.3	0.026	1. 72	19. 2	0. 277
Run21	0.5	1.42	0.0080	8.0	0.030	0. 98	16.7	0. 102
Run22	0.5	1.42	0.0080	23.8	0.060	1.03	8.3	0. 205
Run23	0.5	1.42	0.0080	12.6	0.040	1.01	12.5	0. 137
Run24	0.5	1.42	0.0040	16.8	0.060	0. 73	8.3	0. 102
Run25	0.5	1.42	0.0040	31.0	0.090	0. 73	5.6	0. 154
Run26	0.5	1.42	0.0040	47.4	0. 120	0. 73	4. 2	0. 205
Run27	0. 5	1.42	0.0040	71.5	0.160	0. 71	3. 1	0. 273

主1 宝融冬州

2. 室内実験

室内実験は、水路長25mの可傾斜水路において、表-1 に示すように水路幅、水路勾配、粒径、流量を変化させ、 全27ケースを実施した。これらの条件を変化させること で、フルード数、無次元掃流力、水路幅-水深比といっ たパラメータを幅広く網羅している。

実験では、初期に所定の粒径を持つ土砂を厚さ10cm 程度となるように平坦に敷きならし、これを初期河床と した。実験中は、上流端の河床が顕著に変動しないよう に土砂を供給している。水面波の波長、波高、また水路 横断方向における発生位置を把握するために、水路側方 と水路斜め上より写真撮影を行い、得られた画像より波 長、波高を求めている(図-2)。

3. 実験結果

(1) 三角波・反砂碓の発生について

実施した全27ケースの内、実験中に三角波の発生を確認できたのは**表-2**に示すように12ケースであった。これ

図-2 波高・波長判読の一例。a)水路斜め上からの画像(図 中の丸は水面波の発生位置)、b)水路側面からの画像

図-3 実験において観測された三角波。a) Run2、通水 30 分後、b) Run3、通水 5 分後、c) Run3、通水 30 分後。

ら、三角波が発生したケースでは河床波の発生も同時に 確認された。このときの水面形と河床形は同位相であり、 河床波と水面波は下流に進行していた。図-3にRun2、 Run3において形成された三角波を示す。図-3aのように、 水路中央の水面が三角状に発達し、縦断方向に列を成し て発生する場合だけでなく、図-3bのように横断方向に 列を成して発生するケースもあった。従来、三角波は低 水路の中央付近で形成されると考えられてきたが、この 結果は三角波が低水路護岸の近くや高水敷などより広い 範囲に同時に発生する可能性を示唆している。

三角波の発生条件について検討するために、芦田・道 上⁸が示した小規模河床形態の分類図に本実験で得られ た発生・非発生のデータをプロットしたものを図-4に示 す。図より、三角波が発生したケースはすべてUpper regimeに分類されていることがわかる。一方、 Transition領域に位置するケースでは三角波は非発生で あった。これらのことから、観測された河床波とそれに 伴う三角波は、反砂碓によって想起されたものと予想さ れる。また同図より、Upper regimeに分類されるケース においても水深-粒径比が小さいケースでは、三角波と 反砂碓は非発生になりやすい傾向が見て取れる。次に、 フルード数と無次元掃流力を両軸に取り三角波発生有無 の関係を見たものを図-5に示す。この図より、フルード 数が1以下のケースでは三角波は発生していないことが わかる。これらのケースは、図-4のTransition領域に位 置するケースである。また、無次元掃流力が小さいケー ス、もしくはフルード数が比較的高いケースにおいては、 三角波は非発生となるケースが多いことが確認された。 なお、水面波列が発生しなかったケースでは、河床波も 発生しなかった。これらの傾向より、三角波の発生には 反砂碓の発生が重要な役割を担っていることがわかる。

	水面波列	平均波長	横断方向の列数
	発生有無	(cm)	(初期→後期)
Run1	発生	22. 50	$2 \rightarrow 1 \sim 3$
Run2	発生	42. 50	$1 \rightarrow 1$
Run3	発生	17. 50	$4 \rightarrow 1$
Run4	非発生	_	-
Run5	非発生	_	-
Run6	非発生	_	-
Run7	発生	55.00	$1 \rightarrow 1 \sim 2$
Run8	非発生	_	-
Run9	非発生	_	-
Run10	非発生	_	-
Run11	非発生	_	-
Run12	発生	68. 25	$2 \rightarrow 1 \sim 3$
Run13	非発生	-	-
Run14	発生	33. 83	$3 \rightarrow 1$
Run15	発生	32. 13	$4 \rightarrow 4$
Run16	発生	42. 29	$3 \rightarrow 2 \sim 3$
Run17	発生	17. 70	$10 \rightarrow 1 \sim 2$
Run18	非発生	_	-
Run19	非発生	_	-
Run20	非発生	-	-
Run21	発生	18. 0	$4 \rightarrow 1 \sim 2$
Run22	発生	27.0	$2 \rightarrow 1 \sim 2$
Run23	発生	26. 0	$2 \rightarrow 1 \sim 2$
Run24	非発生	_	-
Run25	非発生	_	-
Run26	非発生	_	-
Run27	非発生	_	-

表-2 実験結果

図-4本実験結果と小規模河床波領域区分図⁸との関係

図-5本実験結果とフルード数、無次元掃流力との関係

(2) モード数の変化

通水初期には三角波が横断方向に列を成して形成され たケースでも、実験後期には列数が減少する、モード数 の減少が見られる場合もあった。図-3b,cは、Run3にお いて通水初期と後期に見られた三角波の様子である。図 より、通水初期には横断方向に3~4列程度の三角波が形 成されているが、図-3cに示すように通水後期には横断 方向に一列となり、左右に蛇行するように発生している ことがわかる。これらの現象は、表-2に示すように、 Run3、Run14、Run17、Run21で見られ、そのほかのケース では、通水初期と後期では顕著なモード数の変化は見ら れなかった。このモード数の減少は、通水後期に形成さ れた交互砂州の影響である。交互砂州が形成されること

Toshiki Iwasaki, Takuya Inoue, Hiroki Yabe

図-6本実験ケースと中規模河床波領域区分図⁹との関係

で、局所的な水理条件が変化し、反砂碓と三角波の形成 に影響を及ぼしたと考えられる。このとき、三角波が形 成される位置は、砂州の瀬であることが多かった。図-6 は、本実験ケースを黒木・岸⁹による中規模河床波領域 区分図にプロットしたものである。モード数の減少が見 られたケースは、いずれも交互砂州領域に位置しており、 交互砂州の影響を受けやすい条件であったことがわかる。 これらの結果は、交互砂州が発生する条件では、三角 波の発生位置が横断方向に一様ではなく、交互砂州の深 掘れと同様に左右に蛇行する可能性を示唆している。実 際に、豊平川では川幅水深比20-50程度で横断方向に複 数列の三角波が形成されるような条件であるが、昭和56 年洪水において観測された三角波は図-1に示すように一 列であった。豊平川は典型的な交互砂州形成河川であり、 三角波観測時も本実験と同様な現象が起きてきたと推察 される。

(3) 波長について

これまでに示したように、三角波の発生には反砂碓の 発生が重要であることが明らかとなった。これは、長谷 川らⁿが従来指摘している現象と同様な結果である。こ こでは、長谷川らⁿによる理論との比較を行うことで、 本実験結果を物理的に説明することを試みる。

長谷川らⁿは、三角波のような急激な水面の上昇は、 河床の不安定性によって発生する反砂確と、水面に固有 に存在する定在波の一種である斜め交錯波が共振するこ とで発生すると考えた。すなわち、河床波と水面波を独 立に考え、それぞれの波長が一致したときを共振状態と し、波長や発生領域を提示している。その理論について、 以下に概要を示す。

まず、Hayashi¹⁰が小規模河床波に関する研究で示して いる次式が実際に観測される反砂碓波長とよく一致する ことを利用する。

$$F_r^2 = \frac{\cosh(kh)}{kh} \tag{1}$$

ここに、Fr:フルード数、h:水深で、kは反砂碓の縦断

方向波数であり、波長をLとおくことで、k = 2πLの関係 にある。長谷川らⁿはこれを以下に示す理論展開に扱い やすいようにテイラー展開を適用して次式により近似し ている。

$$F_r^2 = \frac{1}{(kh)^2} + \frac{1}{3}$$
(2)

次に、水面波として射流時に発生する定在波を斜め交 錯波と定義し、その波数を微小振幅波理論から得られる 三次元定在Airy波の分散関係から以下のように与える。

$$Fr^{2} = \frac{\beta h \tanh(\beta h)}{(k_{w}h)^{2}}$$
, $\beta = \sqrt{k_{w}^{2} + l_{w}^{2}}$ (3)

ここに、 k_w は斜め交錯波の縦断方向波数(= $2\pi L_w$)、 l_w は 斜め交錯波の横断方向波数(= $2\pi u$)であり、Bは水路幅、 l_w は斜め交錯波の縦断方向波長、nは 斜め 交錯波のモード数(横断方向波長が水路幅に一致する場 合に1)で整数をとる。これらを使いやすいように、以 下のように簡略化している。

$$Fr^2 \approx \frac{\alpha \beta h}{\left(k_w h\right)^2}$$
 (4)

なお、 $a = tanh(\theta_t)$ であり、簡単のため実験値等から定数 とおく。さて、反砂碓と斜め交錯波が共振状態というこ とは、両者の波数が一致する状態、すなわち $k = k_w$ であ る。この共振条件と式(2)、(4)より、 l_w について以下の 式を導くことができる。

$$l_{w} = \frac{\sqrt{Fr^{4} - \alpha^{2} \left(Fr^{2} - \frac{1}{3}\right)}}{\alpha h \left(Fr^{2} - \frac{1}{3}\right)}$$
(5)

式(2)で得られる縦断方向波数と式(5)で得られる横 断方向波数を発生初期の実験値と比較したものを図-7 に示す。ただし、αは得られた実験結果の平均値として 0.91と与えた。図より、長谷川らの理論は本実験で観 測された三角波の特徴、すなわち縦横断方向の波数をよ く表していることがわかる。この結果は、反砂碓と水面 固有の斜め交錯波が共鳴することで三角波が発生すると いう長谷川らの主張を支持するものであると考えられる。

5。 おわりに

本論文では、これまであまり知られていなかった三角 波の発生について幅広い条件下における系統的な実験を 実施し、その結果を報告したものである。実験結果より、 三角波の発生には反砂碓の発生が重要な役割を担ってい ること、三角波は縦断方向だけでなく横断方向にも列を 伴って発生し、低水路中央のみならずより広い範囲にお いて発生しうることが示唆された。また、反砂碓と三角 波は交互砂州と同時に発生可能であり、砂州の影響によ

Toshiki Iwasaki, Takuya Inoue, Hiroki Yabe

図-7本実験における三角波の波数と長谷川らの理論との比 較。a)縦断方向波数、b)横断方向波数。

って三角波の発生位置もまた変化することが確認された。 本実験で得られた三角波の波数を、長谷川らの理論と比 較したところ良好な結果が得られた。これは、反砂碓と 水面固有の斜め交錯波が共鳴することで三角波が発生す るという長谷川らの主張を支持する結果である。一方で、 発生・非発生が分かれる原因等については、今後より深 い検討が必要である。

本論文で行った検討は、三角波の発生メカニズムや発 生条件等に関するものに留まっているが、今後は三角波 が河川を維持管理していく中でどのような影響を及ぼし うるかを具体的に示していく必要がある。本論文の最後 に、三角波が河川構造物等にどのような影響を与える可 能性があるかについて触れておきたい。三角波が発生す ると、流速、水深や圧力等が時空間的に大きく変動する ことになる。従って、構造物等に作用する流体力は瞬間 的に大きく変動することになる。一方で、構造物が移動 するか否かを判定する際には、与えられた河道、流量条 件の下で得られる平均的な流速や水深が用いられる¹¹⁾。 構造物の移動は、作用する最大の力によって決まるため、 平均的な水理量のみならず、三角波等、時空間的に変動 する成分までを含めて検討する必要がある。さらに、三 角波と同時に発生する河床波もまた、河床高さを時空間 的に変動させるため、瞬間的に河床が深く掘れる可能性 がある。これは構造物の根入れ深さを考慮する上で重要 である。一般に、このような不確実性を持つ変動分につ いては割り増し係数や安全率といった考え方を導入すれ ばそれでたり得るといえるが、より合理的な構造物の設 計を目指すためにも、三角波等が構造物の安定性にどの ような影響を持つか、今後明らかにする必要があるとい える。

謝辞:本研究の遂行にあたり、北開水エコンサルタント、 長谷川和義氏、北海道大学工学部、渡部靖憲准教授より ご助言頂きました。ここに記して感謝の意を表します。

参考文献

- 橘田隆史、岡田将治、新井励、下田力、出口恭: ラジコンボートを用いた ADCP 移動観測の計測精度評価法に関する一考察、河川技術論文集、第14巻、pp.295-300、2008.
- ・萬矢敦啓、岡田将治、橘田隆史、菅野裕也、深見和彦: 高速流における ADCP 観測のための橋上操作艇に関する提 案、河川技術論文集、第16巻、pp. 59-64、2010.
- 3) 北海道開発局 札幌開発建設部:石狩川流域誌、pp. 1-132、

2010.

- Kennedy, J.F. : Stationary waves and antidunes in alluvial channels, Ph.D thesis, California Instituite of Technology, 1960.
- Guy, H., Simons, D. and Richardson, E. : Summary of Alluvial channel data from flume experiments, 1956-61, Professional Paper 462-I, U.S.G.S., 1966.
- 山田正、池内正幸、堀江良徳:不規則底面をもつ開水路 流れに関する研究、水理講演会論文集、第 28 巻、 pp. 149-155、1984.
- 7) 長谷川和義、山口甲、伊賀久晃、辻珠希:急勾配河川に おける三角状水面波列の発生条件について、平成21年度 土木学会北海道支部論文報告集、第66号、B-1、2007.
- 78) 芦田和男、道上正規:移動床流れの抵抗と掃流砂量に関する基礎的研究、土木学会論文報告集、 Vol. 195、 pp. 59-69、1971.
- 黒木幹男、岸力:中規模河床形態の領域区分に関する理論的研究、土木学会論文集、第342号、pp.87-98、1984.
- Hayashi, T. : Formation of dunes and antidunes in open chan-nels, Journal of Hydraulic Division, Proc. of ASCE, Vol. 96, No. HY2, pp. 357-366, 1970.
- 11) 国土開発技術研究センター編:改訂護岸の力学設計法、 山海堂、pp.1-153、2007.