凍結融解と凍結防止剤の複合作用を受ける道路橋コン クリート部材における塩化物イオン浸透予測の試み

国立研究開発法人 土木研究所 寒地土木研究所 道北支所 〇高田 尚人 国立研究開発法人 土木研究所 寒地土木研究所 寒地技術推進室 川村 浩二 国立研究開発法人 土木研究所 寒地土木研究所 耐寒材料チーム 遠藤 裕丈

コンクリート構造物を合理的に維持管理するには、コンクリートの耐久性が時間軸に沿って どのように低下するかを適切に把握することが大切である。特に寒冷地では、凍結融解と塩化 物の複合作用を考慮した評価が求められる。このことに鑑み、本研究では過年度に提案した、 凍害を考慮した塩化物イオン浸透予測技術を活用し、北海道の道北地域に立地する既設道路橋 下部コンクリートにおいて、凍害の進行を考慮した塩化物イオンの浸透予測を試みた。

キーワード:道路橋、凍結融解、凍結防止剤、塩化物イオン浸透予測

1. はじめに

寒冷地では設置から長い年月が経過し、凍結融解や塩 化物等との複合作用によって性能が低下したコンクリー ト構造物の事例(**写真-1**)が多い。厳しい財政事情の中で コンクリート構造物の合理的な維持管理・長寿命化を図 るには、実態に即したコンクリートの性能評価技術が必 要となる。遠藤ら¹は、塩水を用いた屋内でのコンクリ ートの凍結融解実験の結果等をもとに、凍害を考慮した コンクリートの塩化物イオン浸透予測技術の体系化を図 っている。

本研究では、体系化されたこの考え方にもとづき、凍 結融解と凍結防止剤の複合作用を受けた道路橋コンクリ ート部材における塩化物イオン浸透予測を試みた。

2. 凍害を考慮した塩化物イオン浸透予測の考え方

既報でとりまとめられた、凍害を考慮した塩化物イオン浸透予測の体系を図-1¹に示す。はじめに、塩化物イ

写真-1 凍害を受けたコンクリート構造物の一例

Naoto Takada, Kouji Kawamura, Hirotake Endoh

オン拡散係数に影響を及ぼす凍害について、その進行予 測を行う必要がある。凍害の進行予測は、次式により行 うことができる²。

$$SC = a_1 e^{b_1 \log \frac{cyc}{A}} \quad (0 < cyc < B)$$
(1)

SC =
$$a_2 e^{b_2 \log \frac{cyc \cdot B}{A}} + a_1 e^{b_1 \log \frac{B}{A}}$$
 (cyc \ge B) (2)

$$RE_d = 100e^{-c \cdot cyc^2}$$
 (欠損に至るまで) (3)

図-1 凍害を考慮した塩化物イオンの浸透予測の体系

ここに、SCはスケーリング量(g/cm²)、REaは相対動弾 性係数(%)、cvcは凍結融解サイクル、Aはサイクルを無 次元化させるための係数(一般に最長サイクルの1/2)、ai、 bi、a2、b2、c、dは係数、Bは供用開始からスパイクタイ ヤ使用規制開始までの間に受けた凍結融解サイクルであ る。図-2に凍害進行予測の概念を示す。

図-3¹は凍害の進行に伴う塩化物イオン拡散係数の増 加比を深さごとに示したものである。この図に凍害(ス ケーリング、相対動弾性係数)予測の結果を書き入れる ことで(例えば、図-4のように)、建設当初の塩化物イ オン拡散係数からの増加比の経時変化を把握することが できる。これにより、表面から供給される塩化物イオン 量を決定することで塩化物イオンの浸透予測が可能とな る。塩化物イオン拡散係数が深さごとに経時的に変化す る時の塩化物イオン浸透予測は、次式3を活用すること で比較的簡易に行うことができる。

$$C_{m,n+1} = D_{m,n} \cdot r(C_{m+1,n} + C_{m-1,n}) + C_{m,n}(1-2D_{m,n}r)$$
(4)

$$\mathbf{r} = \frac{\Delta t}{\Delta \mathbf{x}^2} \quad (\hbar \hbar \mathbf{t} \, \mathbf{b} \, \mathrm{Dm,n} \cdot \mathbf{r} \leq \frac{1}{2}) \quad (5)$$

ここに、Cmnは時間tn(年)における深さxm(cm)の塩化物 イオン量(kg/m³)、rは係数、Δは時間tのきざみ幅(t=nΔt)、 Δ_x は深さxのきざみ幅(xm=m\Delta_x)、Dmnは時間thにおける深 さxm1~xm間の塩化物イオン拡散係数(cm²/年)である。

このように、コンクリート表面から表層(深さ0~10 mm) へ侵入する塩化物イオン量(図-1では「深さ5mmの 塩化物イオン量」と記載)、建設当初の塩化物イオン拡 散係数、そして前述したスケーリング量および深さごと の相対動弾性係数の予測から求まる深さごとの塩化物イ オン拡散係数の増加比が決定することで、凍害を考慮し た塩化物イオン浸透予測を行うことが可能となる。

なお、図-3(上)の横軸はスケーリング量としている が、現場に適用する場合は、これを剥離度4に換算した 上で、予測を行うことになる。

Naoto Takada, Kouji Kawamura, Hirotake Endoh

3. 道路橋における塩化物イオンの浸透予測の試み

図-3 凍害の進行に伴う深さ 5~15、15~25、25~35mm における塩化物イオン拡散係数の増加比の変化

過年度に実施した道路橋での調査っにおいて取得した

スケーリング、相対動弾性係数および塩化物イオン量の データを活用し、前述の考え方にもとづいて塩化物イオ ン浸透予測を試みた。

(1) 過年度に実施した現地調査の概要5)

図-5に凍害危険度マップ[®]と調査橋梁を示す。凍害危険度は長谷川[®]が日本全国にある気象官署のデータをもとに、凍害が発生する危険性を地域毎に1~5の5段階で表したものである。数値の大小で凍害の予想程度の大小を示しており、凍結融解作用の厳しさの目安となる。

ここでは、立ち入り可能で凍害の程度が比較的大きい 9橋を調査橋に選定した。選定した道路橋はいずれも凍 害危険度4~5に位置し、冬期は凍結防止剤が散布されて いる。調査対象は橋台とした。外見上、凍害の程度が最 も大きい部位を調査箇所に選定し、剥離度、相対動弾性 係数および塩化物イオン量の測定を実施した。

剥離度はスケーリングに相当する指標である。室内実 験では剥離片の質量をもとにスケーリング量を評価する が、実構造物では剥離片の採取が不可能である。このた め前述したように、式(6)に示す剥離度4により、スケー リングの程度を評価した。

$$D_{\rm m} = D \times A_{\rm s} = D \times \frac{S}{50 \times 50} \tag{6}$$

ここに、Dmは剥離度(mm)、Dは平均剥離深さ(mm)、As は測定範囲(50×50cm)に占めるスケーリング面積の割合、 Sは測定範囲におけるスケーリング面積(cm²)である。

スケーリングが測定範囲全体に発生している場合は、 平均剥離深さが剥離度となる。ここでは式(1)、(2)のSC をD_m、現場における凍結融解サイクル数の把握が極め て難しいことから、計算を簡便に行うためcycを年数tに 置き換え、さらに、図-3の横軸に【参考】として示して いる平均スケーリング量を剥離度に読み替えた上で予測 を行うこととする。また、評価を安全に行う理由から、 凍結防止剤散布前はスケーリングが発生していないと仮 定し、式(1)、(2)のat、brをゼロとする。

図-5 凍害危険度マップと調査橋梁

Naoto Takada, Kouji Kawamura, Hirotake Endoh

写真-2、3に剥離度の測定状況を示す。はじめに、部 材表面に50×50cmの枠を据え付け、枠内で剥離深さを10 点測定し、その平均(D)を求めた。次に、デジタル画像 解析を行って枠内の剥離面積(S)を求め、式(6)より剥離 度を求めた。

次に、相対動弾性係数の測定要領を図-6に示す。調査 箇所からφ10cm×10cm寸法のコアを採取し、コアの両側 面に超音波測定器(周波数28kHz)の発・受振子をあて て剥離面から深さ1、2、3、4、5cmの超音波伝播速度を 測定し、式(7)⁷により相対動弾性係数を求めた。

$$\begin{cases} E_{dn} = 4.0387 V_n^2 - 14.438 V_n + 20.708 \\ RE_d = \frac{E_{dn}}{E_{do}} \times 100 \end{cases}$$
(7)

ここに、Eahは凍結融解作用をn年受けた時の動弾性係数(GPa)、Vnは凍結融解作用をn年受けた時の超音波伝播 速度(km/s)、REaは凍結融解作用をn年受けた時の相対動 弾性係数(%)、Eabは凍結融解作用を受けていない供用直 後の動弾性係数(GPa)もしくは供用中のコンクリート構 造物において健全とみなせる箇所の動弾性係数(GPa)で ある。

なお、Euoは供用直後の測定値が不明のため、調査箇 所の近傍から健全と思われる深部を含めた形でφ10cm× 35cm寸法のコアを採取し、深さ1、2、・・・、35cmの超音 波伝播速度を測定し、最も大きな速度から求めたEun (式(7))をEuoとすることとした。相対動弾性係数につ いても前述の剥離度と同様、式(3)のcycを年数tに置き換 えて予測を行うこととする。

塩化物イオン量の測定は、JIS A 1154に準じて行った。 調査箇所からφ10cm×6cm寸法のコアを採取し、コンク リートカッターを使用して剥離面から深さ0~1cm、1~ 2cm、2~3cm、3~4cm、4~5cmの部分に切り分け、各ス ライス片に含まれる全塩化物イオン量(以下、塩化物イ オン量と記す)を測定した。

図-6 相対動弾性係数測定要領

表-1に調査結果を示す。塩化物イオン量は調査した全 ての深さについて調べているが、一部の欄が空白になっ ている。この理由は後述する。

(2) 塩化物イオン浸透予測の方法

2章で述べた一連の計算が自動で行えるエクセルプロ グラムを作成し、これを用いて凍害の進行を考慮した塩 化物イオン浸透予測を行った。

図-7にエクセルプログラムの画面の一例を示す。式(1) ~(5)および図-2、3で示した情報をすべて組み込んでお り、供用開始年度、調査年度、調査時の剥離度、相対動 弾性係数、塩化物イオン量を入力すると、自動的に剥離 度の予測式、相対動弾性係数の予測式、凍害を考慮した 深さ毎の塩化物イオン拡散係数が求まり、鉄筋かぶり位 置(以下、鉄筋位置と記す)における塩化物イオン量の 経時変化が自動的にグラフ化される仕組みとなっている

(図-8、ただし、剥離度の式における時間を無次元化させる任意の値Aは、ここでは1としている)。

なお、このエクセルプログラムは、調査時における塩 化物イオン量の分布が表面側で大きく、深くなるにつれ て小さくなる形を呈していることを適用条件としている。 このため中性化や表面の洗い流し、測定値のばらつき等 の影響により、この分布を逸脱する形でプロットされた データは便宜上、無視している(例:**表**-1の空欄)。

2章の考え方(図-1)は、予測に先立ち、まず深さ 5mmの塩化物イオン量と建設当時の塩化物イオン拡散係 数を決定し、その後、凍害の進行予測結果をもとに塩化

		Α	В	С	D	Е
供用開始年度(西暦)		1976	1967	1959	1967	1957
調査年度(西暦)		2012	2012	2012	2012	2012
累積散布塩化物 イオン量(CI-kg/m)		56.4	45.7	38.8	6.6	11.4
剥離度 Dm(mm)		15.1	2.1	0.9	3.1	14.1
相対動弾性 係数RE _d (%)	深さ1cm	51.4	89.2	85.7	87.6	93.5
	深さ2cm	70.8	89.2	90.4	93.5	99.1
	深さ3cm	85.4	92.8	96.0	93.5	99.0
	深さ4cm	85.4	92.8	94.1	93.5	99.0
	深さ5cm	67.9	98.2	100.0	99.0	99.0
塩 代 物 イオン 量 CI ^{-(kg/m³)}	深さ0~1cm	0.94	-	1.93	-	-
	深さ1~2cm	-	0.53	1.75	1.90	2.18
	深さ2~3cm	0.80	0.50	0.52	1.80	1.92
	深さ3~4cm	0.82	0.27	0.21	0.63	1.09
	深さ4~5cm	0.71	0.22	0.14	0.20	0.66
		F	G	Н	Ι	
供用開	引始年度(西暦)	F 1964	G 1958	H 1979	I 1968	
供用開 調査	閉始年度(西暦) ҈⊊度(西暦)	F 1964 2012	G 1958 2014	H 1979 2014	I 1968 2014	
<u>供用開</u> 調査 イオン	開始年度(西暦) 至年度(西暦) 散布塩化物 ;量(Cl−kg/m)	F 1964 2012 26.7	G 1958 2014 1887.8	H 1979 2014 68.9	I 1968 2014 59.7	
供調 調 す オ 利 離	開始年度(西暦) 至年度(西暦) 散布塩化物 /量(CI-kg/m) 度 Dm(mm)	F 1964 2012 26.7 2.4	G 1958 2014 1887.8 44.6	H 1979 2014 68.9 0.6	I 1968 2014 59.7 2.0	
供調 累 オ 剥 領 積 ン 離 ()	開始年度(西暦) 至年度(西暦) 散布塩化物 /量(CI-kg/m) 度 Dm(mm) 深さ1cm	F 1964 2012 26.7 2.4 73.5	G 1958 2014 1887.8 44.6 54.0	H 1979 2014 68.9 0.6 59.0	I 1968 2014 59.7 2.0 50.0	
供調累オ剥(%)) 開査積ン離(%))	開始年度(西暦) 全度(西暦) 散布塩化物 /量(Cl-kg/m) 度 Dm(mm) 深さ1cm 深さ2cm	F 1964 2012 26.7 2.4 73.5 73.5	G 1958 2014 1887.8 44.6 54.0 59.0	H 1979 2014 68.9 0.6 59.0 79.0	I 1968 2014 59.7 2.0 50.0 55.0	
供調累オ剥 (%)。34開査積ン離 (%)。34	開始年度(西暦) (年度(西暦) 散布塩化物 「量(CI-kg/m) 度 Dm(mm) 深さ1cm 深さ2cm 深さ3cm	F 1964 2012 26.7 2.4 73.5 73.5 81.2	G 1958 2014 1887.8 44.6 54.0 59.0 60.0	H 1979 2014 68.9 0.6 59.0 79.0 79.0	I 1968 2014 59.7 2.0 50.0 55.0 83.0	
供調累オ剥 期調累オ剥 (%)。 り 調査積ン離	<u>開始年度(西暦)</u> (年度(西暦) 散 (位 に 物 (位 に 家 さ 1 cm 深 さ 2 cm 深 さ 3 cm 深 さ 4 cm	F 1964 2012 26.7 2.4 73.5 73.5 81.2 93.6	G 1958 2014 1887.8 44.6 54.0 59.0 60.0 59.0	H 1979 2014 68.9 0.6 59.0 79.0 79.0 79.0	I 1968 2014 59.7 2.0 50.0 55.0 83.0 96.0	
供調案 オシント 第番 に (%) の 第 本 総 総 に の に の に の の に の に の に の の の に の	<u>開始年度(西暦)</u> (年度(西暦) 散電(Cl-kg/m) 度 Dm(mm) 深さ1cm 深さ2cm 深さ3cm 深さ3cm 深さ5cm	F 1964 2012 26.7 2.4 73.5 73.5 81.2 93.6 99.0	G 1958 2014 1887.8 44.6 54.0 59.0 60.0 59.0 -	H 1979 2014 68.9 0.6 59.0 79.0 79.0 79.0 88.0	I 1968 2014 59.7 2.0 55.0 83.0 96.0 98.0	
供調累 イ剥型 (%) ※ ※ KE (%) () () () () () () () () () () () () ()	開始年度(西暦) 全度(西暦) 主年度(西暦) 散布塩化物 (全し-kg/m) 度 Dm(mm) 定さ1cm 深さ2cm 深さ3cm 深さ3cm 深さ5cm 深さ0~1cm	F 1964 2012 26.7 2.4 73.5 73.5 81.2 93.6 99.0 -	G 1958 2014 1887.8 44.6 54.0 59.0 60.0 59.0 - -	H 1979 2014 68.9 0.6 59.0 79.0 79.0 79.0 79.0 88.0 -	I 1968 2014 59.7 2.0 55.0 83.0 96.0 98.0 0.34	
(オン)	<u>開始年度(西暦)</u> (西暦) (本度(西暦) (本) (CI-kg/m) (文) (CI-kg/m) (文) (CI-kg/m) (文) (CI-kg/m) (文) (CI-kg/m) (文) (CI-kg/m) (文) (CI-kg/m) (文) (CI-kg/m) (文) (CI-kg/m) (文) (CI-kg/m) (文) (CI-kg/m) (文) (CI-kg/m)	F 1964 2012 26.7 2.4 73.5 73.5 81.2 93.6 99.0 - 0.34	G 1958 2014 1887.8 44.6 54.0 59.0 60.0 59.0 - - 1.14	H 1979 2014 68.9 0.6 59.0 79.0 79.0 79.0 88.0 – –	I 1968 2014 59.7 2.0 55.0 83.0 96.0 98.0 0.34 0.22	
、物イオン - 曲な関連時 - 小 - 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	<u>開始年度(西暦)</u> (西暦) (本度(四暦) (本度) (本) (1) (1) (1) (1) (1) (1) (1) (1	F 1964 2012 26.7 2.4 73.5 73.5 81.2 93.6 99.0 - 0.34 0.23	G 1958 2014 1887.8 44.6 54.0 59.0 60.0 59.0 - - 1.14 1.08	H 1979 2014 68.9 0.6 59.0 79.0 79.0 79.0 88.0 - - 0.99	I 1968 2014 59.7 2.0 55.0 83.0 96.0 98.0 0.34 0.22 0.17	
価化物イオソー 抽対響幅は「「Kg/mg/mg/mg/kg/mg/mg/kg/mg/mg/mg/kg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg	<u>開始年度(西暦)</u> 年度(西暦) 年市(五年七物 量(Cl-kg/m) 量(Cl-kg/m) 定さ1cm 深さ2cm 深さ2cm 深さ3cm 深さ3cm 深さ1~2cm 深さ2~3cm 深さ2~3cm 深さ2~3cm 深さ3~4cm	F 1964 2012 26.7 2.4 73.5 73.5 81.2 93.6 99.0 - 0.34 0.23 0.16	G 1958 2014 1887.8 44.6 54.0 59.0 60.0 59.0 - - 1.14 1.08 -	H 1979 2014 68.9 0.6 59.0 79.0 79.0 79.0 88.0 - - 0.99 0.85	I 1968 2014 59.7 2.0 50.0 55.0 83.0 96.0 98.0 0.34 0.22 0.17 0.16	

表−1 調査結果

Naoto Takada, Kouji Kawamura, Hirotake Endoh

物イオン拡散係数の増加比の経時変化(図-4)を定めて 塩化物イオン拡散係数の経時変化を求め、最終的に塩化 物イオン量を算出する流れとなっている。しかし、供用 期間が長く、凍害を受けている場合は、建設当初の塩化 物イオン拡散係数を把握することが難しい場合もある。

そこで、ここでは図-9に示すように、現時点の塩化物 イオン量と、凍害の進行予測の結果から求まる、供用開 始から現在に至るまでの塩化物イオン拡散係数の増加比 の経時変化をもとに、現時点の塩化物イオン量の分布と 最も合致する深さ5mmの塩化物イオン量と建設当時の塩 化物イオン拡散係数を逆算により求めた後、図-1に沿っ て、今後の塩化物イオン拡散係数および鉄筋位置の塩化 物イオン量の予測を行うこととした。なお、ここでの予 測は安全側に行っており、実測値を厳密に予測したもの ではない。

鉄筋位置の塩化物イオン量の予測については、理論上、 表面塩化物イオン量を超えることはないため、予測値が 表面塩化物イオン量に達した場合、達した以降の年次の 値は一定としている。また、鉄筋位置は、今回調査した 内陸の山間部に立地する道路橋はスパイクタイヤの使用

が規制される前に建設されていることに鑑み、一律、安 全を考慮して「対策区分Ⅲ」に相当する深さ50mm[®]と仮 定した。

(3) 予測結果

図-10に塩化物イオン拡散係数の経時変化の予測結果 を示す。現在の設計では塩化物イオン拡散係数を常時一 定とした予測が行われる⁹が、凍害を考慮した場合、橋 梁によって増加比は異なるが、塩化物イオン拡散係数は 経時的に増加する解析結果が示された。

図-11に鉄筋位置における塩化物イオン量の予測を示 す。建設当初から塩化物イオン拡散係数を常時一定とす る現在の設計に基づく予測⁹の場合、9橋全てにおいて発 錆限界の1.2kg/m³を下回ったが、凍害を考慮した場合、9 橋全てにおいて凍害を考慮しない場合よりも大きな値と なり、特にD、Eの2橋は1.2kg/m³を上回り、G橋では1.2kg /m³に近い値に達する結果が示された。この図は、劣化 対策を要する部材の選定や、対策・補修の優先順位づけ を合理的に行う上で有効と考えられる。

なお、図-5に示すA~F橋の路線は凍結防止剤の散布 が少なく、累積散布塩化物イオン量も少ない(表-1)も のの、A橋のように塩化物イオン量は1.2kg/m³には達し ていないものの相対動弾性係数が減少している(図-12)事例もあった。鉄筋腐食は鉄筋位置の塩化物イオン 量だけではなく、凍害も影響を及ぼす(透水・透気性低 下、鉄筋露出)ことから、塩化物イオン量の予測だけで はなく、凍害の進行速度を考慮した評価も重要と考えら れる。

図-9 浸透予測の試みの考え方

Naoto Takada, Kouji Kawamura, Hirotake Endoh

4. まとめ

コンクリート構造物の適切な維持管理技術の提案に向 けた一環として、過年度にとりまとめた凍害を考慮した 塩化物イオンの浸透予測技術を実橋に適用し、鉄筋位置 における塩化物イオンの浸透予測を試みた。本研究の範 囲で得られた知見を以下に示す。

- (1) 凍害を考慮した場合、橋によって増加比は異なるが、 塩化物イオンの拡散係数は経時的に増加する傾向を 示した。
- (2) 建設当初から塩化物イオン拡散係数を常時一定とした場合は9橋全てが発錆限界の1.2kg/m³を下回ったが、 凍害を考慮した場合は9橋中2橋が1.2kg/m³に達し、1 橋が近い値まで増加することを示した。

- (3) 今回用いた予測技術は、劣化対策を要する部材の選定や、対策・補修の優先順位づけを合理的に行う際に有効と考えられる。
- (4) 鉄筋腐食の予測に際しては塩化物イオン量に加え、 凍害の進行も影響することから、この両方について 考慮する必要がある。

凍害の影響を受けている A 橋の事例

Naoto Takada, Kouji Kawamura, Hirotake Endoh

図-4でも述べたように、凍害の進行予測は、塩化物イ オン拡散係数の増加比の経時変化を決定する上で重要な 情報である。凍害の進行は、気候・地理条件、凍結防止 剤の散布状況等と密接な関係がある。設計段階から予測 を行う場合、これらの要因が凍害の進行予測を構成する 係数にどのような影響を及ぼすのか、適切に把握してお くことが大切である。今後は、他の現場でも予測を試み るとともに、凍害の進行予測式を構成する係数に及ぼす 環境条件(気候、凍結防止剤散布量など)の影響に着目 した調査・データ取得を進めていく予定である。

謝辞:調査にご協力頂いた北海道開発局札幌、旭川、帯 広、網走開発建設部の関係各位に謝意を表します。

参考文献

- 遠藤裕丈、島多昭典:凍結融解と塩化物の複合作用を受けるコンクリートの性能評価法の提案、第59回(平成27年度)北海道開発技術研究発表会発表概要集、20162
- 2) 遠藤裕丈、島多昭典、川村浩二:環境条件の変遷を考慮し た凍害予測に関する基礎的研究、第 14 回コンクリート構 造物の補修、補強、アップグレード論文報告集、pp.141-148、 2014.10
- 3) 守分敦郎、長滝重義、大即信明、三浦成夫:既設コンクリ ート構造物の塩化物イオンの拡散過程より評価される表面 処理工法の適用性、土木学会論文集、No520、V-28、pp.111-122、1995.82
- 4) 北海道開発局港湾部港湾建設課、寒地港湾技術研究センター:海洋環境下におけるコンクリートの耐久性向上技術検討業務報告書、資1-10、2000.3
- 5) 高田尚人、遠藤裕丈、島多昭典:寒冷地山間部の道路橋橋 台コンクリートにおける塩化物イオンの浸透性の評価、第 59回(平成 27 年度)北海道開発技術研究発表会発表概要集、 20162
- 長谷川寿夫:コンクリートの凍害危険度算出と水セメント 比限界値の提案、セメント技術年報、Vol.29、pp.248-253、 1975
- 7) 緒方英彦、野中資博、藤原貴央、高田龍一、服部九二雄: 超音波法によるコンクリート製水路の凍害診断、コンクリ ートの凍結融解抵抗性の評価方法に関するシンポジウム論 文集、pp.63-70、2006.12
- 社団法人日本道路協会:道路橋示方書・同解説、IV下部構造編、p169、p177、2000.3
- 3) 公益社団法人土木学会:2013年制定コンクリート標準示方 書「維持管理編」、p171、2008.10.