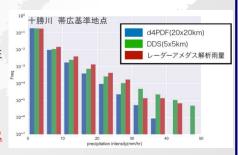
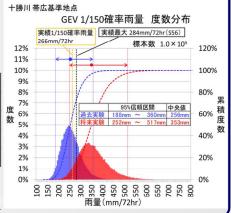
「北海道地方における気候変動予測技術検討委員会」における検討結果及び今後の取組

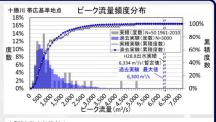

1.降雨の分析結果

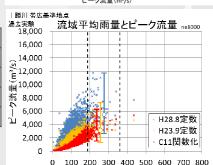

(1) ダウンスケーリングの効果

- d4PDFを5kmにダウンスケーリングすることにより、 強い短時間雨量の再現性が高まった
- 特に、日高山脈の影響を受ける十勝川流域での適合性が高まり、ピアニの手法によるバイアス補正係数は 0.99となり補正はほぼ不要であった
- (2) 大規模アンサンブル実験の効果
- ・ 過去実験3,000年、将来実験5,400年のダウンスケーリングを実施することにより、<u>災害をもたらす極端現象</u>を確率統計的に扱うことが可能となった
- 過去実験と将来実験における確率降雨量の信頼区間は 重なっており、気候変動に備えることは、将来だけで なく、現在気候における気象現象の変動への対応でも あることが明らかになった
- (3) 気候変動による降雨量の変化 [基本方針規模]

	過去実験	将来実験	変化
十勝川 (帯広地点) 72h・1/150	256mm	353mm	1.38倍
十勝川(佐幌川)72h・1/100	277mm	395mm	<u>1.43倍</u>
常呂川(北見地点)24h・1/100	172mm	245mm	<u>1.42倍</u>
常呂川 (無加川) 24h・1/100	172mm	246mm	1.43倍

RCP8.5 (4度上昇) シナリオでは、<u>気候変動の影響により、各流域ともに計画規模の降雨量は約1.4倍に増加</u>




2.洪水量の分析結果

- (1) 流出計算手法
- 流域平均雨量に応じて、C₁₁定数を変化させることにより、<u>過去実験3000年分の流出計算結果と実績流量の頻度</u> 分布は概ね一致した
- 一方、C₁₁関数モデルは、<u>規模の大きい洪水に対して、</u> <u>過小評価になっている可能性</u>がある
- (2) 洪水量の変化

	過去実験	将来実験	変化
十勝川 C11関数化	1508~6300m³/s	2278~9485m³/s	1.66倍
十勝川 H23.9再現定数	1293~7258m³/s	2154~9491m³/s	1.54倍
十勝川 H28.8再現定数	2658 ~ 11750m³/s	3586 ~ 17024m³/s	<u>1.47倍</u>
常呂川 H28.8再現定数	1172~2869m³/s	1629~6097m ³ /s	1.57倍

- 降雨の変化により、洪水量は1.5倍~1.7倍に増加する
- <u>気象シミュレーション</u>を用いることにより、観測実績を 上回る<u>降雨の時空間分布を得ることが可能</u>となった

0 100 200 300 400 500 600 700 800 流域平均雨量(mm/72h)

3.被害の分析結果

(1)被害の変化

指標	十勝川流域			常呂川流域		
7日代表	過去実験	将来実験	変化	過去実験	将来実験	変化
浸水面積(ha)	14,100	19,500	1.4倍	6,700	8,400	<u>1.3倍</u>
農地被害面積(ha)	11,500	15,900	1.4倍	5,200	6,300	<u>1.2倍</u>
浸水家屋数 (戸)	25,600	29,500	<u>1.2倍</u>	10,400	14,500	1.4倍
要配慮者施設数(箇所)	40	65	1.6倍	13	21	1.6倍
浸水区域内人口(人)	53,400	60,800	1.1倍	22,900	31,000	1.4倍
想定死者数 (人)	160	370	<u>2.3倍</u>	30	200	<u>6.7倍</u>
最大孤立者数(人)	23,700	31,800	<u>1.3倍</u>	6,000	11,500	1.9倍

※3ケースの平均値、避難率40%

- 十勝川流域では、浸水面積は4割、浸水家屋数は2割増加する
- ・ 常呂川流域では、浸水面積は3割、浸水家屋数は4割増加する
- 浸水深の増加により、人的被害への影響が特に大きい (参考)被害の推定手法
- 本検討会では、死者数推定手法は主に浸水深と年齢に依存する手法を採用したが、 オランダでは、流速や氾濫水の水位上昇速度にも依存する手法を取り入れている

4.今後、検討すべき事項

- 気候変動後に生じる降雨は、現在気候においても、気象現象の変動として生じうる。オランダでは、foolate toolittleにならないように適応策の検討が進められている。北海道においても、気候変動の影響による被害を軽減するための対策を進めるべき
- 十勝川流域、常呂川流域を対象に、気候変動による降雨量の変化を明らかにした。今後、道内他河川や他地域の河川の影響を把握すべき
- 中小河川や山地部では、気候変動の影響が顕著になることが懸念されている。佐幌川流域、無加川流域の分析では明確な傾向が確認できなかったことから、引き続き、地域や流域への影響の現れ方について分析を進めるべき
- 本検討では、RCP8.5シナリオについて分析を行った。オランダ等の 諸外国では、他のシナリオについても分析を行っており、<u>複数シナリ</u> オについて分析を行う必要がある
- リスクの推定手法は十分に確立されていない部分もあり、オランダ等 の事例も参考に技術的向上を図るべきである
- ・ なお、本委員会での検討結果は半年余りの限られた時間で取りまとめ たもので、不十分な点はあるものの、画期的な成果が得られており、 技術的知見を速やかに取りまとめ、公表すべきである