あしたを創る 北の知道 りみを知るて 75年 末末へつなくれのすれの可能性 ・ 北海道開発局 寒地土木研究所

CERI

COLD REGION

治水対策として十勝川中流部に整備された「千代田新水路」の一部を活用して、「千代田実験水路」が平成19年に完成しました。

この「千代田実験水路」は、国内最大規模の実物大河川実験施設として、堤防破壊のプロセス、河床変動などの土砂移動、河道内樹木の密度 と洪水時の抵抗、多自然工法や樹木・植生などによる堤防や河岸の保護機能等を解明し、安全で安心できる国土づくりや美しい国土づくりに資す る成果を得ることを目的としています。

図1 千代田新水路の施設配置

2.千代田実験水路の諸元と観測施設

実験水路は分流堰の4門のゲートのうち1門を利用してつくられており、低水路幅30m、堤防高4mの断面で、長さ1300m、河床勾配約1/500となっています(表1、図2、3)。実験水路の上流端のゲートで流量をコントロールすることができ、実物大での実験が可能です。

今まで縮尺模型実験では解明できなかった現象や実河川では観測が非常に困難であった現象などについて、この千代田実験水路を用いることで解明することが可能になります。

3.実験水路での研究計画(案)

現場における個々の技術的課題を解決するための技術開発、河川工学に係る体系的・重点的な技術開発のため、北海道開発局と寒地土木 研究所との共同研究により、以下のテーマを実験研究長期計画として設定しています。現在は平成20年度からテーマIの破堤拡幅機構の解 明のための研究を中心に実施しています。

を創る北の知恵

表2 実験研究長期計画のテーマ

長期メインテーマ(実験例)

- 堤防・保護工の機能評価技術の向上 I
- (破堤拡幅機構の解明、保護工の機能検討) 治水と環境を両立した樹林管理手法の確立 п
- (河道内樹林群の流れの解明、橋脚による樹木閉塞メカニズムの解明)
- 流域土砂管理の精度向上 π

テーマ

- (混合粒径河床の土砂動態解明、河床波の抵抗則等の解明)
- 河道設計技術の向上 N
- <u>(観測機器・手法の開発、複断面やアイスジャム河川の流れの解明)</u>
- 洪水擾乱後の生態系変化の把握 v
- (洪水攪乱の影響把握、植生侵入メカニズムの解明)
- 水防技術・意識の向上 vī
- <u>(水防工法の機能検証、水防訓練、住民への防災教育)</u>

破堤拡幅機構の解明 破堤拡大状況(開口部の広がり方、 速度,開口幅、氾濫流量等)を解明

混合粒径河床の土砂動態解明

出水時に発生する河床波による 洗掘深と抵抗則を解明

複断面の流れの解明

複新面流れにおける平面渦の形成

や土砂移動機構を解明

テーマ

河道内樹林群内の流れの解明 樹木の抵抗係数、樹木内の土砂堆積 機構、河畔林の流木捕捉機能を解明

橋脚による樹木閉塞メカニズムの解明 流木による橋脚部の閉塞機構、それに伴う 水位上昇量、構造物の破損影響量の解明

歩みを重ねて 75年 未来へつなぐ北の土木の可能性

北海道開発局 **寒地土木研究所**

マロ

CERI

洪水攪乱の影響把握 植生侵入メカニズムの解明 礫床への植生が侵入するきっかけ とそれに寄与する物質の解明

図 4 各研究テーマの実験イメージ

水防訓練、住民への防災教育

 ・水防・水難救助訓練による水防技術の向上 水防工法の機能検証

4.破堤拡幅機構の解明

研究テーマ I (破堤拡幅機構に関する実験)

【背景】

近年、台風や集中豪雨などによる豪雨災害が多発しており、河川の氾濫による大規模な水害の発 生が懸念されています。なかでも堤防決壊(破堤)による被害は甚大ですが、破堤のプロセスはよく 分かっておらず、河川堤防の破堤機構の解明は、水害被害の軽減に向けて重要な課題です。破堤 要因の8 割以上が越水に起因するものであると言われており、越水破堤現象のうち、特にこれまで 未解明な点が多い破堤拡幅機構に関する知見を得ることは重要です。

【目的】

これまでの破堤に関する調査研究は、主に縮尺模型実験などを中心に行われてきました。千代田 実験水路では、実スケールで、しかも実河川と同様に河道の流れに対して縦断的に配置された堤防 からの横越流による破堤実験が可能です。破堤進行時の堤体及び水理量の時系列の観測データを 得ることにより、破堤進行過程を解明することを目的としています。

【実験スケジュール】

千代田実験水路における越水破堤実験は、前例の ない規模の実スケール実験です。そのため、まず、 予備実験により各種計測手法の確認や基本的な破 堤進行過程の把握を行い、そこで得られた知見に よって実験条件を決定し、本実験を実施しました。

表 3	実験スケジュ・	ール
-----	---------	----

年度	実施内容
H20~21年度	予備実験
H22~23年度	本実験

石狩川水系石狩川の破堤氾濫(S56.8洪水)

信濃川水系五十嵐川諏訪地区の破堤氾濫状況 (2004.7.13 新潟豪雨洪水災害調査委員会報告書より)

① 実験条件

堤防の基本形状は、高さ3m、天端幅3m、法面勾配1:2.0です。実験水路の断面 形状を図7に示します。

実験は、表4に示す4ケースを実施しました。各ケースは、Case1の基本形状に対し、Case2:流量が小さい場合、Case3:堤体材料がシルト質の場合、Case4:天端幅が広い場合について、破堤進行過程への影響に着目して実験を実施しました。 なお、今回の実験では、堤体は裸堤(芝を張らない土堤)とし、設定した箇所から 破堤拡幅が始まるように堤体に切欠部を設けています。また、通水流量に限界が あるため河道幅に制約があるなど、条件を限定して実験を行っています。

矢板

図7 破堤部の実験水路横断形状(基本形状)

2 観測項目

- 主な観測は以下に示す項目のものを実施しました。
 - ·水路内水位(電波式水位計·水圧式水位計)
 - ·氾濫域水位(水圧式水位計)
 - ·流量観測(ADCP観測船·電波式流速計)
 - ·流況観測(PIV手法、3D画像解析)
 - ・破堤形状(堤体内部に設置した加速度センサーの流出による 堤体崩壊状態の感知)
 - ・実験状況(カメラ・ビデオ撮影)

③ 実験状況

破堤進行状況とともに、氾濫流量や破堤拡幅幅の時間変化等を整理しました。(図8、図9)

図8より、越水初期段階では氾濫流量はほとんど増加していませんが、破 堤の拡幅が始まると氾濫流量が急激に増加しています。その後、氾濫流量 がピークに達した後、各ケースで差はあるものの、ほぼ一定の水位を保っ て推移しています。

なお、Case3では越水開始後から破堤拡幅開始に至るまでの時間が長かったり、Case2では破堤の拡幅速度が小さかったなど、堤体材料や天端幅 等の違いにより破堤進行状況に違いがあることが分かりました。

CERI

図 6 実験全体風景

図9 破堤の進行過程(Case1)

CERI

堤防の破堤進行過程は4つの段階に分類できることが分かりました

④ 実験結果

堤防の破壊進行状況は図10に示す4つのステップで整理ができることが分かりました。

破堤氾濫終了後の河道や氾濫域の状況を図11に示します。また標高別に色づけしたものを図12に示します。 破堤に伴い、破堤部から上流の河道の河床が低下するとともに、堤体や河道内の土砂が流出し、氾濫域に堆積している状況がわかります。

図 11 通水終了後の河道や氾濫域の状況(Case1)

図 12 通水終了後の河道や氾濫域の地形形状(Case1)

堤体崩壊量と水理量(水深や流速等)との関係について整理しました

⑤ 破堤進行過程と水理量

破堤拡幅について、水理量を用いた定量的な評価手法の検討を行 いました。

検討は、a)堤体崩壊量の定量化、b)実験結果による堤体崩壊量の算 出、c)破堤部の水理量の定量化を行い、これらを整理しCase1~4の無 次元堤体崩壊量と堤体に作用する無次元掃流力を求め、d)堤体崩壊 量と掃流力の関係について整理しました。

a) 堤体崩壊量の定量化

河川の土砂移動量は掃流砂量式で表現されます。代表的な既往 の掃流砂量式(1)を参考に、無次元堤体崩壊量q,を式(2)で表現します 。無次元堤体崩壊量q,は図13に示す堤体崩壊量から式(3)を用いて算 出します。堤体の崩壊量と掃流力について整理を行い、堤体崩壊は氾 濫流による堤体土塊の掃流現象として表せるものと考え、堤体崩壊量 を掃流砂量として、堤体に作用する無次元掃流力との関係で整理する こととしました。

$$q_B = 8(\tau_* - \tau_{*c})^{1.5} \sqrt{sgd^3}$$
 (1)

$$q_{*} = \frac{q_{B}}{\sqrt{sgd^{3}}} = \alpha_{*}(\tau_{*} - \tau_{*c})^{\beta_{*}}$$
(2)

$$q_* = \frac{dV}{dt} \frac{1}{\left(\sqrt{sgd_{50}^3} B_m\right)} (1 - \lambda)$$
(3)

ここで、 q_{B} :単位幅あたりの掃流砂量、 r_{*} :無次元掃流力、 r_{*0} : 無次元限界掃流力、s:砂粒の水中比重、g:重力加速度、d:砂粒の 粒径、 q_{*} :無次元堤体崩壞量、 α_{*} · β_{*} :係数、V:堤体崩壞量、t:時間 、 d_{s0} :砂粒の50%通過粒径、 B_{m} :堤体下幅、 λ :空隙率を表します。

b) 堤体崩壊量の算出

堤体内や地盤に設置した加速度センサーの記録結果を用いて、基礎地盤を含む堤体崩壊量を求めました(図13参照)。

越水直後の堤体崩壊量はわずかですが、その後、堤体の破堤拡幅 の進行にあわせて急激に崩壊量が増大し、ピークに達したのち減少す るという過程を経ることが分かりました。

c) 破堤部水理量の定量化

破堤拡幅の進行は、開口部下流端の堤体に流れがぶつかりながら 進行しています。よって、破堤拡幅現象の評価にあたっては、図14に示 すように、破堤開口部近傍の水理量を用いることとしました。

図 14 破堤部水理量の算出

破堤開口部に作用する無次元掃流力 $r_*(t式(4)より求め、破堤開$ 口部の裏法近傍の流速 <math>uと実験水路の粗度係数nはマニングの式を整 理した式(5)を適用します。次に式(4)と(5)から無次元掃流力 r_* を式(6) で求めました。また、限界無次元掃流力 r_* 。は岩垣の式より求めてい ます。

$$\tau_* = \frac{u_*^2}{sgd} = \frac{hi_e}{sd} \tag{4}$$

$$i_e = \frac{u^2 n^2}{h_3^4}$$
 (5)

$$\tau_* = \frac{u^2 n^2}{s d \tau_0 h^{\frac{1}{3}}} \tag{6}$$

ここで、u_{*}:摩擦速度、s:砂粒の水中比重、g:重力加速度、d:粒径、h:水深(ここでは、破堤開口部の水深h)、i_g:エネルギー勾配、u: 流速(PIV画像解析により求めた平均流速値)、n:粗度係数(ここで は実験水路の値0.023)、h:水深(3D画像解析により求めた水深)、 d_{s0}:砂粒の50%通過粒径を表します。

d) 堤体崩壊量と掃流力の関係

Case1~4の実験結果より、式(3)、式(6)から無次元堤体崩壊量と無 次元掃流力を求め、関係式(7)の係数 *α_{*}・β**を求めます。

無次元堤体崩壊量と堤体に作用する無次元掃流力の関係を図15に 示します。

堤体特性や土質は各ケースで異なるものの、プロットした結果は相 関性があることが分かりました。無次元堤体崩壊量と破堤開口部周辺 の無次元掃流力の関係が掃流砂量式に近い形で表すことができるこ とが分かりました。

