資料1:平成22~23年度背割堤の越水破堤実験計画(具体案)について

- 1. 実験条件と破堤範囲
- 1.1 実験ケース
- 1.2 参考:堤体・基盤の土質
- 1.3 破堤範囲と復旧方法
- 2. 実験水路形状図
- 2.1 ケース1(H22年4月下旬)実験水路形状
- 2.2 ケース2(H22年6月下旬)実験水路形状
- 2.3 ケース3(H22年8月)実験水路形状
- 3.実験計画と観測計画
- 3.1 計測項目
- 3.2 加速度センサー配置図
- 3.3 計測位置図

平成22年3月10日

- 国土交通省 北海道開発局
- 独立行政法人 寒地土木研究所

1.実験条件と破堤範囲

1.1 実験ケース(案)

前回の実験検討会での意見及びその後の堤体土質調査結果より、実験ケースについては以下の方針で見直す ことにした。

第7回実験検討会での主な意見	実験ケース見直し方針
①堤体土質を調査したところ、実験想定区間基盤下	下流帯工 P632.2 より下流範囲は実験対象区間に入れな
流部は細粒分が多く、中間部で As1、Ag2 層が異	<i>د</i> ر.
なる。	調査結果を図1、2に示す。
②破堤部の落堀は、河川河床からの土砂の供給が少	ケース 3 の本川 Fr 数の違いで破堤の初期段階の状況を
ないとできやすい。よって、Fr が小さい時の方が、	確認する。
落堀ができやすい可能性がある。	
③破堤が進行するメカニズムを解明して、破堤進行	ケース1・2の結果を踏まえて、ケース5の実験条件を
を遅らせる要因の研究が重要	検討する。

表2 実験ケース見直し案

ケース	方針	築堤材	流量	Fr 数	堤防形状	実施時期 (案)	実験区間
1	基本ケース	砂礫	70	0.47	高 3m、天端幅 3m、裏法勾配 1:2	H22年4月下旬	第1区間
2	裏法緩勾配の効果	砂礫	70	0.47	高 3m、天端幅 3m、 裏法勾配 1:4	H22年6月下旬	第2区間上流
3	本川 Fr の違い	砂礫	35	0. 23	高 3m、天端幅 3m、裏法勾配 1:2	H22 年 8 月	第2区間下流
4	堤体材相違の効果	シルト	70	0.47	高 3m、天端幅 3m、裏法勾配 1:2	H23年4月下旬	第1区間
5	天端幅拡幅の効果	砂礫	70	0.47	高 3m、 天端幅 6m、 裏法勾配 1:2	H23年6月下旬	第2区間上流

1.2 参考:堤体・基盤の土質

 $\mathbf{2}$

図2 粒度曲線重ね図

図4 破堤範囲と復旧方法

ケース3:64m区間

図5 各ケースの実験ケース平面図

2. 実験水路形状図

2.1 ケース1(H22年4月下旬)実験水路形状

990

法面部用

हितान 990

図6 実験水路平面図 ケース1

年長	£ ₹	成	21	年度	施行		
工事名	5 千代日	千代田実験水路越水破堤実験					
図面種類	ι -	-般図		図面番号	ł		
縮ノ	र	I	2	7			
帯 広 開 発 建 設 部							

2.2 ケース2(H22年6月下旬)実験水路形状

2.3 ケース3(H22年8月)実験水路形状

図8 実験水路平面図 ケース3

3.実験計画と観測計画

3.1 計測項目

表 8 実験計測項目(案)

計測項目	詳細項目	計測内容	具体的計測方法	
水路内水位・流量	給水量	堰コンより算出(水路上流流量観測で補足)	ゲート上流水位、ゲート高から越流量換算式より算出	ゲート操作室
	氾濫量 Qcut	破堤部上流水路内流量観測 Qin 破堤部下流水路内流量観測 Qout	定点水位観測(電波式水位計鋼矢板部に移設) (ダイバー水位計補足)	電波式水位計観測・ADCP 流速・ ・水路内切欠き部より上流 50m
		氾濫量 Qcut=Qin-Qout	 流速観測(杭ワイヤー式 ADCP 観測)※1 電波流速計観測(表面流速補足) 堰上げ装置上流 P720 地点で H-Q 破堤前計測 	・水路内切欠き部より下流 125r (ケース3のみ下流 100m 地点
	水路内水位	水位計による計測	定点水位観測(電波式水位計移設) ダイバー式水位計(既存機器活用) 鋼矢板上流部の貯留量把握(P310. P210 水位)	切欠き部、切欠き上流 50m、下 実験水路縮小部:25m ピッチ、
	水路内流速	流速計による計測 浮子による計測	杭ワイヤー式 ADCP 観測※1 浮子による流速値補足計測	杭ワイヤー式ADCP観測およ ・水路内切欠き部より上流 50m ・水路内切欠き部より下流 125r
			ブローイングマシーンによるトレーサー投入(3 箇所)	(ケース3のみ下流 100m ± トレーサー投入位置:人道橋 (
堤体破堤部~氾濫域	全景写真	実験状況記録	ラジコンヘリによる全景撮影	高度100m、実験水路~新水路全
の状況	破堤部~氾濫域状況写 真	越流状況記録、モニタリング 破堤状況記録、モニタリング	クレーン・高所作業車によるビデオ撮影	矢板裏上空から:58m×48m×2 [×] 背割堤下流側上空から:20m×2
			作業員によるビデオ撮影(河川側) (背割堤上下流)	河川側(鋼矢板裏)から:上流 背割堤上下流から2アングル(
			遠隔操作によるビデオ撮影(氾濫域側) → コード出力もしくは無線によるモニタリング	氾濫域側から:正面から、下流 (撮影支柱の設
	破堤部~氾濫域洗掘状 況	堤体内、基盤部の破壊・洗掘状況	加速度センサー埋設 充填材に色砂を利用して最大洗掘深を測定	加速度センサー埋設数 ケース 裏法面中間 12 本
	堤体内水位	堤体内湿潤線の把握	ワイヤレス間隙水圧計	堤体内4点 破堤部1測線
	破壞面~氾濫域流況	水位計測	画像3D解析(写真撮影、トレーサー) 支柱にダイバー水位計設置	矢板裏上空から:58m×48m×2 ³ 支柱にダイバー水位計4器設置
		流速計測	PIV解析 (ビデオ撮影、トレーサー)	矢板裏上空から:58m×48m×2、
	通水後の洗掘状況	洗掘深計測	新水路初期河床(浅深測量) レーザープロファイラ(水面上) レベルによる地形測量(水面下)	氾濫域 20m ピッチ:6 断面程度 破堤部及び落堀部
濁水の影響	濁水モニタリング		採水して、濁度・SS 計測	 堰上流、堰直下、実験水路破堤 端左岸・右岸、十勝川合流点(
堤体材料特性	堤体土質調査	(次年度築堤範囲を調査)	土質試験(粒度分布等) 簡易現場透水試験 RI 測定(締固め度)	築堤材料毎 実験毎 打設層毎

計測場所

河床高観測、電波流速計表面流速観測位置
 m 地点(水位安定箇所)
 5m 地点(河床変動影響少ない場所)
 点)

流 125m、P720、P310、P210 鋼矢板沿い 7 点、右岸護岸沿い 6 点

、び浮子による流速計測位置 m 地点(流れ安定部分) sm 地点(河床変動量影響受けない距離) 地点) (左右岸)、破堤部下流左岸 全体 アングル(クレーン)※2 20m×1アングル(高所作業車) たから+裏正面から+下流から3アングル(三脚) (三脚) たから、2アングル(遠隔) 設置が必要)

1・3 計 357 個、ケース 2 計 354 個

アングル(クレーン)※2

アングル (クレーン) ※2

-

上流部・下流部、観測橋、新水路左岸、実験水路終 (左右)、千代田大橋(左中右)、十勝大橋、茂岩橋 3.2 加速度センサー配置図

(1) 第1区間、第3区間破堤時

図9 加速度センサー設置位置図 ケース1、3 (ケース3の設置位置は、ケース1実験後補正予定) (1) 第2区間破堤時

図10 加速度センサー設置位置図 ケース2

3.3 計測位置図

(1) ケース1(H22年4月下旬)実験計画、切欠き軸P463

(2) ケース2(H22年6月下旬)実験計画、切欠き軸 P543.4

11

図 13 観測位置図 ケース 3

山山 人道橋:切欠き部上流 40m、P543

─ トレーサー散布(人道橋 P543 左右岸、破堤部下流鋼矢板 P603)

定点水位計観測(6基:切欠き部(P583)、切欠き上流 50m(P533)、下流 100m(P683)、P720、P310、P210) 178,48譲床工(根固めプロッタ) 異形矢板折れ点部 \帯工 P+374 26 P+371 26 26 382. P+363 00 3. 00 27.74 19.00102.81

(高さ 1m の土盛り+クレーン車 65ton クラス) ▶ 評定点:支柱、堤防中心及び鋼矢板部に評定点設置(P565~P625 10m ピッチ)