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 潜水士が不足する中、高度で効率的な藻場モニタリング手法の構築を目的とした、ROVの動

画と物体検出AIを組み合わせた藻場面積の割合（被度）の自動算定手法を検討した。この結果、

限られたAI学習データを増幅することで、AIによる藻場検出精度が大幅に向上するとともに、

従来の潜水士では点在した被度情報の取得のみに限られていたが、AIにより測線全体の連続し

た被度分布を評価できることを明らかにした。 
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1.  はじめに 

 
 コンブやアマモに代表される藻場は、沿岸生態系にお

ける生物多様性の基盤であり、多くの水産有用種の産

卵・育成場として漁業を支えている。近年では、光合成

を通じて二酸化炭素を吸収・貯留するブルーカーボン生

態系としての役割が注目され、その保全・再生は気候変

動対策の観点からも喫緊の課題となっている1)。しかし、

世界的な海水温の上昇や局所的な海洋環境の変化により、

藻場の衰退や消失などの、いわゆる「磯焼け」が各地で

深刻化しており、その実態を正確かつ継続的に把握する

ためのモニタリング技術の確立が急務である。 
従来、藻場調査は潜水士による直接観察が主として行

われてきた。この手法は、海藻の種類や被度を潜水が直

接目視で評価するため、質の高いデータが得られる一方、

潜水士の高齢化と担い手不足が深刻化していることや、

予算上の制約からモニタリング調査の実施が難しい場合

もある。また、積雪寒冷地である北海道では年中、海水

が低温環境下であり、身体的・時間的制約が厳しい条件

下で潜水作業を強いられる。さらに、1日当たりの作業

量には限界があり、調査範囲はあらかじめ設定した代表

測線に限定されるため、広域の藻場分布を面的に評価す

ることは困難であった。 
この課題に対し、衛星や航空機、UAV（ドローン）

を用いたリモートセンシング技術が近年導入されてきた

が、水の濁りや水深に影響されやすく、詳細な生物種構

成や群落構造の把握には限界がある。特に、高密度な群

落では、レーザー光や音響が上層の葉状体に遮蔽され、

下層の状況を正確に捉えられないという問題も指摘され

ている2)。 
そこで本研究では、潜水士調査の「質の高さ」とリモ

ートセンシングの「効率性」を両立するアプローチとし

て、遠隔操作無人探査機（ROV）による水中動画と、

深層学習を用いたAI画像解析技術の融合に着目した。

ROVは、潜水士に代わって安全かつ効率的に水中映像

を取得できるため、この膨大な映像データをAIで自動解

析することにより、連続的かつ定量的なモニタリングの

実現が期待される。 
近年、AI、特に深層学習モデルを用いて水中映像から

海藻を検出し、被度を算出する研究が報告されているが、

国内における研究事例はまだ十分とは言えない。また、

これまでに報告されている研究では、特定の海域や撮影

条件に最適化された「特化型モデル」が用いられており、

光環境や海藻の種類・生育状況が異なる他の場所や時期

に適用した場合、精度が著しく低下するという「汎用性」

の課題が指摘されている。また、高精度なAIモデルの構

築には、専門家による大量のアノテーション（教師デー

タの作成）作業が必要であり、その人的・時間的コスト

は実用化への大きな障壁となっている3) 。 
本研究では、アノテーションコストと精度のバランス

を考慮し、物体検出モデル「YOLO」を用いて、ROVで
撮影した動画からコンブ、紅藻、その他雑海藻、海藻以

外のクラス別の被度を自動的に算出する手法を開発し、

その有効性を検証する。また、限られたアノテーション

データから物体検出精度を向上させるためのデータ増幅

の有効性についても定量的に検討する。本研究を通じて、

潜水作業を補完・代替し、より広範囲を定量的に評価可

能な藻場モニタリング手法の確立を目指すものである。 
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2．  調査方法 

 
(1)   藻場調査 

 
図-1 調査位置（元稲府漁港） 

   

図-2 水中カメラの設置（左：ROV、右：調査船） 

 
現地調査は北海道のオホーツク海に面する元稲府漁港

で実施した。本漁港は図-1に示すように、静穏度対策の

ため混成堤と消波ブロック式傾斜堤の2重堤構造とされ

ており、2重堤間は投石により水深1.5m程度の浅場が造

成され、リシリコンブを主体とした藻場となっている。 
本研究で解析対象とする海底藻場の動画は、2023年7

月に、図-1に示す赤色の測線上L=50mを対象に、水中カ

メラ(Gopro)を海底面へ向けて艤装したROVおよび調査船

（図-2）を航行させ、後述する機械学習のデータとした。

また、測線上の被度の実態を把握するとともに、ROV
の航行座標を把握するため、L=50m区間内に10m間隔5箇
所に0.5m四方の方形枠が付いたロープを展張した。測線

両端の座標は船上のGPSで計測した。ROV自体にはGPS
が搭載されていないため、ROV本体の映像を船上のモ

ニターで確認しながら、ロープ上に沿った調査を行った。

一方、調査船については、測線両端に設置したボンデン

を目印にするとともに、船上のPCにて船の位置をGPSで
確認しながら、測線上へ誘導を行った。なお、潮位変化

の影響を避けるため、潮止まりの時間帯に実施し、調査

期間中の潮位は0.17～0.23mと概ね一定であった。 
カメラと海底との距離は、調査手法によって異なり、

調査船では水面下約1.0mの位置に水中カメラを固定して

おり、測線上の現地盤水深は1.5～2.0m程度であることか

ら、海底からのカメラ高度は0.7～1.2mとなった。一方、

ROVの航行深度は、動画内に映る方形枠の大きさと

Goproの視野角（縦90°、横120°）から海底上約0.4mと

推定された。これらの条件から、動画１フレームあたり

の撮影範囲は、調査船では縦1.5m×横2.5m、ROVが縦

1.0m×横2.0mと推定され、通常の方形枠（1.0m四方）よ

り広範囲の被度を把握していることとなる。 
動画の撮影本数は、調査船およびROVともに各2回、

同一測線上を航行し、計4本の動画を取得した。 
 
(2)   AI解析方法 
本研究で用いるAI解析は、主に教師データセットの作

成、AIモデルの学習、精度の検証という3つの工程にて

実施した。 
まず、教師データセットの作成工程では、深層学習モ

デルに不可欠なアノテーションデータを準備した。アノ

テーションとは、画像内の対象物に対して、その位置と

種別（クラス）の正解情報を手動で付与する作業である。

本研究では、ウェブベースのプラットフォームである

Roboflowを使用した。アノテーションの手法には、各ク

ラスの周囲の輪郭を詳細になぞるセマンティックセグメ

ンテーションや、矩形の領域で設定するバウンディング

ボックス等があるが、海藻の複雑な形状をピクセル単位

でなぞるセマンティックセグメンテーションは膨大な労

力を要する。そのため、本研究では実務的な作業を想定

し、バウンディングボックスを採用した。アノテーショ

ンデータは、(1)で取得した4本の動画から各250枚ずつ、

合計1,000枚の静止画を抽出して作成した。 
次に、AIモデルの学習工程では、物体検出モデルとし

てリアルタイム性と精度のバランスに優れたYOLO (You 
Only Look Once) を採用した。YOLOは、Ultralytics社が提供

する畳み込みニューラルネットワークを用いた機械学習

モデルである。本研究では、今後のセマンティックセグ

メンテーションによる比較検討も視野に入れ、これに対

応しているYOLOv8を用いた。また、使用するPCの性能

等に応じて選択可能な5段階のモデルサイズの中から、

本研究では中間的なMediumモデル（YOLOv8m）を選択

した。本研究の計算処理には、NVIDIA社製のGeForce 
RTX 4070 Ti SUPER GPUを用いたが、Mediumモデルによ

る1ケース当たりの処理時間は最大で約40時間を要した。 
さらに、限られたデータからモデルの学習精度を高め

るとともに、データ増幅の有効性を検証するため、①増

幅なし（学習データ増幅を行わない場合、データ数0.1
万枚）、②増幅1（回転、反転によりデータを0.7万枚ま

で増幅）、③増幅2（回転、反転、色調調整によりデー

タを1.5万枚まで増幅）の3ケースで比較を行った。なお、

データ増幅はRoboflow上でも可能であるが、本研究では

python上でデータを拡張した。 

この拡張後のデータセットの内、70％をYOLOの訓練

データ、30%を学習精度検証用のデータとして分割した。

アノテーションの分類クラスはコンブ、紅藻、その他雑

海藻、および岩盤の4クラスとした。当該区域のコンブ

は主にリシリコンブであり、スジメも一部含まれるが、

アノテーション上は同一とした。紅藻については主にア

カバ、ダルス、クロハギンナンソウが、その他の雑海藻

（方形枠） 
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はウガノモク、無節サンゴモ、カレキグサ（本来紅藻で

あるが便宜上雑海藻に含める）が見られたが、4分類以

外の海藻種別毎の細かい分類は行わなかった。 

 
図-3 アノテーションの一例 

 
図-3にアノテーションの一例を示す。図中の枠が各分

類クラスであり、コンブ（茶）、紅藻（赤）、その他の

雑海藻（緑）、現地盤（青）としている。海藻は複雑な

形状であるため、1つのボックスだけでは囲いきれない

ことが多く、その場合には複数のボックスで分割して対

象を囲んだ。また、過度にボックスが小さくなることを

避け（究極的には１ピクセル毎の設定となるが現実的で

ないため）、ある程度大きなボックス（ボックス内の主

要なクラスが概ね80%以上となるよう）を描き、その内

部に別のクラスが存在する場合には、その部分をさらに

別なボックスで重ねて囲う手法（その場合も当該クラス

が概ね80%以上となるよう範囲指定）を採用した。なお、

本研究のアノテーションは全て著者1名のみで実施した

ため、作業者間の判断基準の差異による誤差は含まれな

いと考えられる。アノーテーション作業時間は1日8時間

当たり100枚程度で、0.1万枚に対して10日程度を要した。 
 
 

3. 結果と考察 

 
(1)   藻場調査結果 

 
図-4 海藻被度と組成の経年変化 

 

図-4に海藻被度（赤丸）と被度組成（積上棒グラフ、

重量）の経年変化を示す。2023年7月以前の過去の調査

結果も参考までに記載している。各年の海藻種は褐藻で

あるリシリコンブが卓越しており、コンブ以外には、そ

の他褐藻（スジメ、ウガノモク等）、紅藻（無節サンゴ

モ類、イソキリ、アカバ等）、緑藻（アナアオサ等）が

見られた。2023年時点では気候変動による海藻種の変化

は確認されていないが、2017年6月時点と比べると平均

海藻被度は減少傾向にある。各年の海藻被度については，

丸山ら4)を参考に、Rank1：被度0-4%（大部分は海や岩

礁）、Rank2：被度5-49%（海や岩礁、海藻が混在）、

Rank3：被度50-100%（大半が海藻）とすると、2018年6
月では、全76地点の内、Rank1が16地点、Rank2が28地点、

Rank3が32地点で平均被度は47%（内、リシリコンブは

40%）であった。2018年9月は全76地点の内、Rank1が26
地点、Rank2が33地点、Rank3が17地点で平均被度は28%
（内、リシリコンブは24%）であった。2023年7月は全8
地点の内、Rank1が0地点、Rank2が4地点、Rank3が4地点

で平均被度は50%（内、リシリコンブは45%）であった。 

 
図-5 海藻被度とリシリコンブ湿重量 

 
図-5に2018年6月、9月、2023年7月における方形枠調査

によるリシリコンブの被度と湿重量の関係を示す。被度

と湿重量は概ね線形関係にあり、決定係数も0.8495と高

い相関を示す。なお、2023年7月にはリシリコンブの全

長も計測しているが、海藻の長さは被度に関わらず0.1
～2.4mの範囲であった。 

 
(2)   AI学習精度およびデータ増幅の有効性 

 

図-6 F値の変化（データ増幅なし、データ数0.1万枚） 
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図-7 F値の変化（増幅1、データ数0.7万枚） 

 

図-8 F値の変化（増幅2、データ数1.5万枚） 
 

図-6、図-7、図-8にデータ増幅なしと増幅1、増幅2の
学習精度の比較を示す。横軸は信頼度を示しており、モ

デルが物体を検出した際に、その予測がどれだけ確から

しいかを示す0から1のスコアである（1が最も信頼度が

高い）。この信頼度に閾値を設け、スコアが閾値を上回

った予測のみを「正解」として採用する。閾値を低く設

定すれば多くの物体を検出できるが誤検出も増え、高く

設定すれば確実な物体のみ検出されるが検出漏れが増え

るトレードオフの関係にある。縦軸は精度（Precision）
と再現率（Recall）の調和平均であるF値（F-measure）と

している。F値の定義を以下、式(1)-(3)に示す。 
 □□□□□□□□□ = □□/(□□ + □□)                         (1) □□□□□□ = □□/(□□ + □□)  (2) 

□ − □□□□□□□ = □□□□□□□□□□∙□□□□□□
□□□□□□□□□□□□□□□□   (3) 

 
ここで、TP(True Positive)：正解クラスを真と判定した

数、FP(False Positive)：正解クラス以外を真と判定した

数、FN(False Negative)：正解クラスを偽（別なクラス）

と判定した数である。なお、F 値は 0 から 1.0 を示し、

1.0が最も精度が良いことを示す。 
データ増幅なしのケース（図-6）において、全クラス

の平均F値は信頼度0.2の時に0.4程度のピーク値を示して

いる。しかし、信頼度の閾値がわずかに上がるだけでF
値が急激に減少することから、このモデルは特定の閾値

でしか最適な性能を発揮できず、信頼性に欠ける不安定

なモデルであるということが言える。一方、データ増幅

1（図-7）、増幅2（図-8）では、両者とも信頼度の閾値

が0.90程度という高いピーク値を示し、信頼度が0.1から

0.7までF値が高い水準で横ばいとなっており、信頼性を

確保したまま高い精度で検出可能なことから、より実用

的で安定したモデルが構築できたことを示している。ま

た、増幅2では増幅1に比べて信頼性0.8付近において紅

藻以外のクラスのF値も高い水準で横ばいを保っている

ことから、データ増幅の際に色調調整を加えることで精

度がさらに向上したと考えられる。 
 

表-1 増幅2の混同行列 

 

表-2 各ケースの分類精度（F値） 

ケース名 増幅なし 増幅1 増幅2 

データ数 0.1万枚 0.7万枚 1.5万枚 

コンブ 0.29 0.91 0.95 
雑海藻 0.52 0.91 0.95 
紅藻 0.52 0.93 0.95 
地盤 0.46 0.90 0.94 

全体精度(平均) 0.45 0.91 0.95 
全体精度(重み) 0.21 0.86 0.92 

 
表-1に、増幅2の混同行列を示す。混同行列とはモデ

ルのクラスごとの分類性能を詳細に評価するものであり、

縦軸がモデルの予測クラス、横軸が正解クラスで、数値

は検出データ数を示している。つまり、縦軸（列）の合

計が各クラスの全正解データ数、横軸（行）の合計が各

クラスのAIの全予測データ数を示す。たとえば、現地盤

の場合は8,957個の正解値に対して、実際に現地盤と分

類されたのが8,699個、雑海藻と誤分類されたのが2個、

未検出（4クラスのいずれにも分類されなかったデータ）

が254個となる。また、誤検出とは正解ボックスの範囲

外を誤って4クラスのいずれかに検出したデータであり、

コンブの場合は412個が誤検出されている。混同行列は
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対角の数字が多い程、精度が良いことを示す。4クラス

の各クラスのデータ数が違うのはアノテーションのデー

タ数の違いである。未検出や誤検出が見られるものの、

対角の数字が大部分を占めており、各クラスで概ね正解

クラスに分類されている。 
表-2に、データ増幅の有無によるF値の比較を示す。F

値の全体精度（平均）は4クラスの単純平均、全体精度

（重み）は未検出データのF値を0とした上で各クラス

のデータ数の重みを考慮している。増幅なしのF値は

0.21と低い値に留まる。これに対し、増幅1では0.86まで

向上し、さらに色調調整を加えた増幅2では0.92まで大

幅に向上した。 
以上の結果から、限られた教師データからでも、デー

タ増幅を適切に行うことで、多様な撮影状況に対応可能

な信頼性の高いモデルを構築できることを示しており、

AIモデル開発におけるデータ増幅の重要性を裏付けるも

のである。 
 

(3)   AIによる海藻の自動検出結果 

 
図-9 YOLOによる物体検出の一例 

 
図-9は、本研究で最終的に採用したモデル（データ増

幅2）における画像の検出の一例である。枠の色は、茶

色：コンブ、緑色：雑海藻、赤色；紅藻、青色：現地盤

を示している。コンブだけでなくコンブ以外の紅藻や雑

海藻だけでなく、海藻以外の現地盤も検出している。こ

れにより、現地盤の部分を被度から除外することが可能

となる。なお、画像にはロープと方形枠も写っているが、

方形枠内には紅藻が無いことから、従来の方形枠内の限

られた範囲の調査では海藻の構成種を誤って評価する可

能性があるため、水中カメラにより方形枠よりも広い範

囲を撮影することや、AIで連続して解析することで、

様々な海藻を的確に捉えることが可能となる。 
次に、AIモデルが教師データをどの程度正確に学習・

再現できているかを評価するため、図-10および図-11に、

AIによる予測被度（予測値）と、アノテーション作業時

に目視で評価した被度（正解値）との相関関係を示す。

縦軸（予測値）、横軸（正解値）ともに被度の割合を示

し、被度100%を1としている。 
図-10（case1）は、動画１コマ当たりの画面全体の大

きさを1（被度100%）とみなして、それに対するラベル

毎のボックス面積の合計の割合を被度とする場合である。

この方法では、同じ海藻や地盤に対して複数のボックス

が重複して検出される場合、累計被度が100%を超える

ことがある。図-11（case2）は、検出された全ボックス

の面積の合計を被度100%とみなして、それに対するラ

ベル毎のボックス面積の合計の割合を被度とする場合で、

累計被度は100%となる。 
 

 
図-10 YOLOによる被度の相関 

（case1画面の大きさを被度100%） 

 
図-11 YOLOによる被度の相関 

（case2ボックス累計を被度100%） 

 
図-10（case1）ではボックスの重複により縦軸（予測

値）が最大で1.4（被度140%）に達している。一方、図-
11（case2）では近似直線はほぼ y=xとなり、決定係数も

R²=0.988とcase1（R²=0.969）より高い相関を示した。ま

た、case1ではバウンディングボックスの重複によって

被度が過大評価されているが、csae2の手法ではボック

スの累計を100%とすることでこの問題が解消される。

このことから、YOLOにより海藻種別毎の被度を算定す

る場合にはcase2の手法がより実態に近い被度を表現で



SUGAWARA Yoshihiro 

きると考えられる。 
このように、学習させたAIモデルが、目視による被度

の判断基準を非常に高い精度で再現できていることが確

認された。 
 
(4)   AIによる海藻被度の時系列 
開発したAIモデルの実用性を評価するため、ROVで

撮影した動画全体にモデルを適用し、時系列で連続的に

算出した被度と、目視による被度を比較した。AIによる

被度算出は、前節のCase2（全検出ボックス面積の合計

を100%とする手法）を用いた（図-12）。 
 

 
図-12 YOLOによ被度の時系列（ROVの場合）  

 
AIによる予測被度（折れ線）は、50mの測線区間で地

点によって大きく変動しているが、特に、主要な海藻で

あるコンブの予測被度は、目視による被度（マーカー）

の変動傾向と良好に一致しており、本手法が測線上の被

度分布を自動で評価できることを示している。 
また、AIによる連続データを見ると、被度はわずか1

～2mの距離が違うだけで、100%近傍から20%へと急激

に変動するパッチ状の藻場分布となっていることが確認

できる。これは、従来の方形枠調査のような点在した離

散的データだけでは、測線全体の平均被度や群落構造を

代表しているとは限らず、サンプリング地点のわずかな

ズレが藻場全体の評価に大きく影響しうることを示唆し

ている。 
一方で、AIによる予測と正解に乖離が見られる地点も

存在した。特に、紅藻やその他雑海藻については、被度

が低いエリアでの検出漏れや、コンブとの誤認識により、

目視との一致度はコンブほど高くない傾向が見られた。

これは、その他雑海藻としていくつかの海藻を一纏めに

したことや、アノテーションデータにおけるサンプル数

の不均衡などが影響していると考えられる。 
以上の結果から、本研究で開発したAI解析手法は、潜

水調査の離散的な情報を、定量的な連続情報へと拡張す

る上で極めて有効であることが示された。これにより、

潜水調査による藻場の空間的な不均一性を軽減し、調査

精度と被度算定効率を大幅に向上させることが可能とな

る。 

 
 
4．  まとめ 
 
本報告では、潜水作業の省力化と高度で効率的な藻場

モニタリング手法の構築を目指し、ROVにより撮影し

た水中動画と物体検出AI「YOLO」を組み合わせた海藻

被度の自動算出手法を開発した。その結果、1000枚程度

の限られた教師データでも、回転や色調調整といったデ

ータ増幅を行うことで、モデルの信頼性が大幅に向上し、

F値0.92という高い検出精度となることを確認した。 
また、本手法により、測線上の被度分布を自動で連続

的に評価できることを確認した。特に、検出された全ボ

ックスの面積合計を100%として各クラスの被度を算出

する方法（Case2）は、決定係数R²=0.988と極めて高い精

度で教師データを再現でき、実用的な被度推定手法とし

て有効であることが示された。 
仮に人力で動画全体の被度を算定する場合、動画の解

像度が30fps（1秒間に30コマの画像）とすると、約1分の

動画は1,800枚の画像の集合体となるが、著者がアノテ

ーションした実績から1日あたり100枚の早さで被度や海

藻種別の整理を行ったとしても、18日という長期間を要

することとなり、広範囲を長時間調査した動画を全て人

力で解析することは現実的には困難と思われる。 
一方、AIモデルを作成するためには、アノテーション

やpythonでの解析作業などが別途必要となるが、一度作

成した学習モデルを、別な動画（調査測線等）に適用す

ることで作業効率の大幅な向上と広範囲の藻場分布の詳

細な把握が可能となる。 
このことから、本研究の成果は、効率的かつ高精度な

藻場モニタリング技術の確立に寄与するものと言える。 
今後は学習済みモデルを別な調査時期へ適用可能か、

汎用性の観点で検討することや、データ増幅のさらなる

効率的手法についても検討していきたい。 
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