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 令和2年4月、元稲府漁港の取水施設の内、港外海底に設置されている取水口の破損が確認さ

れた。本報では、取水口の破損に至った経緯を調査し、流氷からの作用が直接の被災要因とし

て想定されたため、これへの対策を検討した。併せて数値シミュレーションによる流氷衝突の

再現実験を行い、対策方法とした取水口の防護柵の有効性を検証し、現地の取水口の復旧まで

の一連について報告するものである。 
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1.  はじめに 

 北海道のオホーツク海沿岸では、流氷の来襲により港

湾・漁港施設に被害が生じる事例が報告されている。 

元稲府漁港では、サケ・ホタテの衛生管理を目的とし、

港外から清浄な海水を取り入れるために取水施設を整備

し、平成26年3月に完成した。しかし、令和2年4月に海

水が供給されないといった取水障害が発生し、調査の結

果、流氷が要因とされる、取水口の破損が確認された。 

このような背景を踏まえ、流氷が来襲する海域におけ

る施設を整備する際には、流氷による影響を考慮する必

要がある。 

 本稿は、元稲府漁港の取水施設の破損事例を対象に、

破損状況の詳細調査、流氷による外力作用メカニズムの

解明、数値シミュレーションによる再現計算、および現

地観測による検証を通じて、取水口の破損原因を解明し、

効果的な対策工法を提案するものである。 

 

 

2.  破損の要因 

(1)   破損原因の推定 

破損のあった取水口位置を図-1に、取水口の破損状況

を写真-1に示す。破損状況は図-2に示すとおり、取水管

立ち上り部が破断され、取水口が港外側に落下していた。

取水口の落下位置から、南から北向きの外力により破損

したと推測される。破損原因としては、波の作用により

取水管立ち上り部が破断したと想定した場合、南側に落

下する可能性が高く、波の作用が直接の原因ではないと

推測される。 

地元自治体および地元漁協へヒアリングした結果、漁

船アンカー衝突等の外的要因も考え難いこと踏まえ、流

氷による外力が要因と想定された。 

 

 

図-1 取水施設位置 

 

 

写真-1  取水口破損状況 

 

 

図-2 取水口破損状況イメージ図 
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(2)   破損時期の推定 

前述のとおり、取水障害は令和2年4月に発生したが、

令和元年5月27日の深浅測量（マルチビーム測深）の結

果を確認したところ、図-3に示すとおり取水口の落下が

確認でき、破損時期は平成31年（2019年）の流氷襲来時

と想定した。なお、破損から取水障害が発生するまでの

間、取水管立ち上がり部が破断した状態で取水が行われ

ていたことになるが、当該期間において利用上の問題は

発生していなかった。  

気象庁の流氷密接度および波浪状況データによると、

取水施設建設以降（平成26年冬以降）、毎年流氷が接岸

しているが、特に平成31年（2019年）が直近20年で流氷

の勢力が最も強かった。 

 

 

図-3  深浅測量(マルチビーム測深)結果 

 

(3)   破損メカニズムの推定 

 取水口の破損メカニズムとして、流氷の衝突（CASE1）

（図-4）と流氷の準静的荷重（CASE2）（図-5）が考え

られる。 

CASE1は流氷離岸時の氷塊衝突を想定したものである

が、取水口カバー等を含む全体の損傷には至っていない

現状と整合しておらずこのケースは可能性が低いと想定

される。 

 CASE2は流氷のパイルアップ（流氷が構造物の前で堆

積する現象）による繰り返し荷重を想定したものである。

既往研究から流氷が水面に見えるセイル（Sail height）:流

氷が水中に沈んでいるキール（Keel depth）の比を1:1.6

（図-6）1)とすると、防波堤の天端高程度までパイルア

ップした際に取水口下端まで着底する。取水口の設置位

置は防波堤に近接していることから、パイルアップした

流氷が取水口に接触し、繰り返し水平力が作用すること

で破損に至ったと想定される。 

 破断面が引きちぎられた形状であること、取水口カバ

ーや基礎コンクリートに大きな変状が確認されないこと、

有識者ヒアリングにより設置水深からの流氷衝突は考え

にくくパイルアップによる影響の可能性が示唆されたこ

とから、流氷による準静的荷重（CASE2）が繰り返し作

用し、管の疲労により破断に至ったものと推測される。 

 

 

 

図-4  外力作用メカニズム模式図(CASE1) 

 

 

 

図-5  外力作用メカニズム模式図（CASE2） 

 

また、セイルとキールの比から、流氷が着底する場合

のセイルの高さは、取水口設置水深=－7.0m、H.W.L.=＋

1.40m、L.W.L.=±0.00mであることを踏まえ、 

H.W.L.時：8.4/1.6=5.25m 

L.W.L.時：7.0/1.6=4.38m であり、概ね防波堤の天端高

と同程度まで流氷がパイルアップした時に取水口設置水

深まで着底することになる。（図-7） 

 

 

図-6  サハリン沿岸域における変形氷の規模 

 

 

図-7  パイルアップ高さ 
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また、写真-2,3のような流氷のパイルアップについて、

今回の取水口の設置位置が防波堤に比較的近接した位置

にあり、流氷が防波堤にせき止められやすい条件である

ことから、せき止められた流氷がパイルアップし拡大す

ることで、最終的に取水口に接触したことが想定される。 

 

 

写真-2  流氷の水面からの突出 

（提供：雄武漁協 撮影位置：雄武漁港沖0.4㎞地点 

（2018.冬）） 

 

 

写真-3  パイルアップ事例（斜里漁港） 

 

 推定した外力に対する既設取水管立ち上り部（ポリエ

チレン管）の応力照査2),3),4),5)の結果を表-1に示す。CASE1

では曲げ強度が大きく許容値を超えているが、現場状況

から流氷が衝突するような状況は考えづらく、許容値を

超えるようなことはなかったと推察される。一方、

CASE2では曲げ強度とせん断強度が許容値内であるもの

の、現地がパイルアップしやすい状況であり、流氷によ

る準静的荷重（CASE2）が繰り返し作用したと考えられ

ることから、管が疲労により破断に至ったものと推測さ

れる。 

 
表-1  既設取水管（ポリエチレン管）の応力照査 

 

 

3.  取水施設の対策 

取水口破損状況および原因の推定を踏まえ、破損した

取水口の改良方針を検討した。 

 

(1)   取水管破断部の改良および防護柵の設置 

取水管破断部は、繰り返し荷重の作用による疲労破壊

と推定されたことから、立ち上り部の強化を目的にポリ

エチレン管（PE管）をステンレス管に変更した。 

 既設のPE管は可とう性を有し、取水口が外力を受け

た際にたわみが発生するため、繰り返し荷重や経年によ

り劣化しやすく、立ち上り部が破断しやすい。（図-8左） 

 一方で、ステンレス管に改良することにより剛性が高

くなり、外力作用時において荷重が直接基礎コンクリー

トに伝達し、取水管立ち上り部周辺のコンクリートのひ

び割れ発生や、立ち上り部の剛性が高くなる。（図-8右） 

また、強度を有さない取水口カバー等の破損が懸念さ

れるため、取水口に流氷による外力が作用しない対策と

して防護柵を設置することとした。 

 

 

図-8  取水口に外力が作用した際のイメージ図 

 

ステンレス管への改良後の応力照査結果を表-2に示す。 

表-2のとおりどちらのケースにおいても応力の許容値

であり、安定性が確保される。 

 
表-2  取水管（ステンレス管）の応力照査 

 

 

(2)   既設取水口の流用および部材の交換 

既設取水口は立ち上り高さ3m程度で、付帯構造とし

て土砂の巻き上がり対策の砂殺しプレートφ=2000mmが

設置されている。漁協へのヒアリングの結果、供用時に

は水質・水量に問題はなく、巻き上げ土砂が取水口に混

入する問題も生じていなかったことから、管内の埋塞対

策として高い効果を発揮していたことが確認できた。こ

のため、基本形状を維持し取水口を流用した。ただし、

既設基礎コンクリートは、コンクリート内部に埋め込ま

れている破損したポリエチレン管を取り外す際に取り壊

す必要があることから、新設することとした。 

  

(3)  取水管防護柵構造 

防護柵は、既設砂殺しプレート（φ=2000mm）を格納

可能な支柱芯間隔2.5mとし、支柱は角形鋼管（350mm）、

ビームはH形鋼（250mm)とした。 

材質は、流氷による摩耗やサンドエロージョンの影響

が少ない「鉄材+溶融亜鉛めっき」と「ステンレス鋼材」

を比較検討し、経済性から「鉄材+溶融亜鉛めっき」案

を採用することとした。 

防護柵上部蓋については、流氷がパイルアップした際

に防護柵に鉛直方向の荷重がかかることが想定されるこ

とから、取水口に直接荷重が作用することを防ぐ目的で、

防護柵上部に蓋（H形鋼フレーム）を設置することとし

外力ケース

CASE1：流氷の衝突外力に対する評価 188 > 25.5 OUT 8.74 < 14.7 OK

CASE2：流氷の静的荷重に対する評価 21.6 < 25.5 OK 1.01 < 14.7 OK

降伏曲げ強度(N/mm2) 降伏せん断強度(N/mm2)

外力ケース

CASE1：流氷の衝突外力に対する評価 188 < 205 OK 8.74 < 118 OK

CASE2：流氷の静的荷重に対する評価 21.6 < 205 OK 1.01 < 118 OK

降伏曲げ強度(N/mm2) 降伏せん断強度(N/mm2)
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た。H形鋼フレームの間隔は、パイルアップ荷重に対応

するため0.3m間隔とした。 

 

 

写真-4  既設取水管（引き上げ時）の様子 

 

(4)  維持管理 

 目視確認等の通常点検は取水口防護柵の開口部より行

い、取水口に異物等が流入した場合は、上部蓋（H形鋼

フレーム）を取外してメンテナンスを行う。また、取水

管全体の修理等が必要な場合は、防護柵の上部蓋を取り

外して行うことを想定した。 

 

(5)  洗掘対策 

取水口周辺において、1.5m～2.0m程度の洗掘が発生し

ていたため、基礎コンクリートに直接的に流氷外力や波

力が作用することを防ぐことを目的に、石かご10t型

（被覆鉄線）を設置した。 

 

        

写真-5  防護柵設置後の取水口 

 

 

4.  流氷観測 

取水管の破損メカニズムの妥当性を検証するとともに、

対策工として整備された防護柵の有効性を確認するため、

現地観測を行った。 

 

(1)  令和5年度調査 

令和5年12月～令和6年3月まで陸上および水中カメラ

等による観測を実施した。 

流氷の接岸を確認できたのは1月25日～27日および2月

27日～3月1日のみであり、いずれも流氷の密度が低くパ

イルアップは確認されなかった。水中カメラおよび潜水

士による目視観察の結果、防護柵への流氷の接触痕跡は

認められなかった。 

(2)  令和6年度調査 

 令和6年12月～令和7年3月まで陸上カメラによる観測

を行った。また、防護柵側面にテストピース（コンパネ）

も設置したが、流氷の擦過痕は確認されなかった。 

 流氷接岸時（令和7年2月13日、2月20日）には、ドロ

ーン撮影も実施した。ドローン映像から作成したオルソ

画像では、流氷高は概ね0.8m～1.3m（最大2.0m）あり、

最大喫水は-1.84mと推定された。これは取水施設防護柵

の天端水深-4.0mに接触する懸念がなかったことを示し

ている。 

 

 

5.  数値シミュレーションによる取水口への影響の

評価 

(1)  検討概要 

前述の観測では、流氷厚さの推定や流氷来襲状況の検

討結果より、取水口に達するようなパイルアップの発生

は確認できなかった。また、取水口への流氷接触状況の

各検討結果より、取水口への流氷の接触も発生していな

かったことが確認できた。 

図-9に令和6年と令和7年の海氷面積の年別経過図を示

す。令和6年の海氷面積は、ピーク時に平年値を超える

状況であったものの、パイルアップや取水口への流氷の

接触が確認されていない。このため、流氷が取水口に接

触する現象は、異常気象に伴う現象であると考えられる。 

ここでは、異常気象に伴う現象を解明する上で一般的

に用いられる数値シミュレーションにより、再現実験を

行った。なお、再現実験は、「パイルアップによる取水

口への接触」によるものとした。 

 

 

図-9  海氷面積の年別経過図 

 

(2)  解析手法 

解析手法は、流氷と海水を粒子としてモデル化し、パ

イルアップによる流氷の重なりと深度を再現可能な

SPH(Smoothed Particle Hydrodynamics)法を用いたオープンソ
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ース解析ソフトウェア(DualSPHysics)を用いた。 

 

(3)  計算結果 

2ケースの計算結果を図-10及び図-11に示す。 

 CASE1：移動速度0.2m/s 

CASE2：移動速度0.3m/s 

両ケースともにパイルアップの発生は確認されたが、

沖合へ流出するため、取水施設への接触が生じるまでの

状況とはならなかった。なお、流氷が密な状態を初期条

件としているが、取水施設上の水面まで達する継続時間

はCASE1で700s、CASE2で500s程度であり、継続時間と

しては短いものであった。また、パイルアップ高は、

CASE2でやや大きいが、両ケースともに取水施設の天端

水深まで達している氷塊がみられ、数十年に一度発生す

るような強風の条件でなくても、流氷量や流氷の形状等

によっては接触に至る可能性があると考えられる。 

 

 

 

 

 

図-10  計算結果（パイルアップ・CASE1） 

 

 

 

 

図-11  計算結果（パイルアップ・CASE2） 

 

(4)  防護柵の有効性の検討 

シミュレーション結果をもとに、防護柵の有効性につ

いて検討した。 

各検討ケースおよびその結果について表-3に示す。パ

イルアップについては、取水口への接触は発生していな

いが、取水口の天端水深まで潜り込んでいる氷塊が接触

した場合の圧力とした。検討の結果、パイルアップ時の

流氷水平力に対して、防護柵の安定性が確保されている

ことを確認できた。 
表-3  安定照査結果 

 

 

 

6. おわりに 

本稿では、元稲府漁港の取水施設で生じた破損の原因

を調査し、流氷による外力作用メカニズムを解明した。

さらに、数値シミュレーションと現地観測により、流氷

による影響及び対策工法の有効性を検証した。 

流氷が来襲する海域における施設整備では、流氷によ

る影響を考慮した検討が不可欠である。今後は、流氷勢

力が大きい年に追加調査を行い、当該施設での対策の妥

当性をさらに検証していきたいと考えている。 
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滑動 転倒

パイルアップ時 5.648 ≧ 1.20... OK 3.565 ≧ 1.20... OK
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