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本研究では、物理法則を組み込んだ AI 技術である PINNs を用いて、限られた水理量の観測

データから解析領域全体の浸水状況を推定するモデルを構築した。本モデルは、二次元浅水

流方程式を損失関数に組み込むことで、数値解析で 40 時間要した計算を 5 分で得られること

を示した。さらに、複雑な地形情報を効率的に反映できる K-Planes を導入し、標高データを

事前学習させた。80 m および 320 m 間隔の観測地点数で性能を比較したところ、本モデルは

観測地点が少ない状況でも高い再現性を示した。今後、物理 AI などの技術を活用することで、

効率的な観測網設計や防災計画への活用、リアルタイムな洪水予測の展開が期待される。            
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1. はじめに 

 
近年、地球温暖化や気候変動に起因する甚大な水害が

頻発しており、避難指示の対象となる住民が増加してい

る。これを受け、水防法の改正・施行や「水防災意識社

会再構築ビジョン」などが推進され、住民の自主的な避

難行動を支援するための情報整備の重要性が一層高まっ

ている。さらに 2021 年には、流域治水関連法が法制化

され、流域全体で水害を軽減させる流域治水への転換に

より、土地利用と一体となった対策等が検討・実施され

つつある。 
このような状況下で、国土交通省は、流域内の浸水状

況について安価な浸水センサーなどを活用した浸水実績

の把握に取り組んでいる1)。一方で、SAR 衛星解析、監

視カメラ映像、市民からの投稿画像、IoT 水位計といっ

た多様な観測手段が登場し、さらに物理法則を組み込ん

だ AI（物理 AI）技術が発展してきたことにより、限定

的な観測データから広域の浸水状況を高速かつ高精度に

推定する手法の実現可能性が大きく向上している。 
物理 AIの一分野である Physics-Informed Neural Networks

（PINNs）2)は、深層学習フレームワークが持つ自動微分

機能を活用し、観測データと物理法則（偏微分方程式）

の両方を満たすように学習を進める技術である（図-1）。

一般的な深層学習では、入力データと正解データを基に、

両者の差から算出される損失を最小化する予測関数（次

元（特徴量の数）と多層な構造でデザインされる）を学

習する。一方、PINNs では、データ損失と物理損失の和

を最小化する予測関数を学習する。このため、PINNs は、

少ない観測データからでも物理的に妥当な予測が可能で

ある。また、ニューラルネットワークの特性により、数

値解析手法で利用される計算格子への離散化が不要で高

速な解析が可能である。実際に、洪水時の浸水解析にお

いて、最大 2日程度要していた計算を数分に短縮した事

例も報告されている3)。 
しかし、PINNs にも課題は存在する。第一に、PINN

損失（データ損失と物理損失の和）を十分に小さくでき

ない場合、物理法則を正確に満たせない可能性がある。

また、サンプリングする地点の密度を高めると精度は向

上するが計算速度が低下するというトレードオフの関係

がある。第二に、PINNs は現象を連続的な関数として近

似するため、堤防のような不連続な地形の表現が本質的

 

図-1 深層学習（PINNs含む）の学習の仕組み 
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に困難であるという点である。 
これらの課題に対処するため、本研究では、3 次元形

状復元技術であるNeRFs（Neural Radiance Fields）4)で用い

られる位置エンコーディング手法「K-Planes5)」を利用し、

PINNs に導入した。この改良により、従来の位置エンコ

ーディングの手法（後述する）では困難だった低密度の

サンプリング条件下でも、浸水状況の全体像を高い精度

で推定が可能であるかを確かめた。さらに、K-Planes に
対して事前に地形情報を学習させる独自の手法を構築す

ることで、地形の複雑性や不連続性を考慮した浸水解析

の実現可能性について検討した。 
以上の背景と開発技術経緯を踏まえ、本報では、既知

の浸水深や標高値から未知地点の浸水深を高速かつ高精

度に推定する物理AIモデルを構築し、観測地点のサンプ

リング密度がモデルの推定精度に与える影響を評価する

ことを目的とした。具体的には、サンプリング間隔の異

なる条件下において、従来の位置エンコーディング手法

（PE: Positional Encoding）と提案手法（K-Planes）の再現

性を比較検証し、観測データが限定的な状況下における

本手法の有効性を明らかにする。 
 

2. 階層型グリッドベースの位置埋め込みの導入 

 

PINNs は、非常に多様な視点での改良が検討されてい

る6)。PINNs を洪水氾濫解析へ適用する上での主要な課

題は、前述の通り、複雑な実地形における物理法則の厳

密な再現と計算コストのバランス、そして堤防のような

不連続地形の表現である。これらの課題解決を目指し、

本研究では NeRFs 等で用いられる階層型グリッドベー

スの位置埋め込み手法である「K-Planes」に着目し、こ

れをモデル内部（予測関数）の座標処理として組み込む

こととした（図-2）。 
K-Planes の導入は、時空間座標をより表現力の高い特

徴量空間へ写像することを可能とする（図-3）。具体的

には、複数の階層から得られた特徴量を連結することで、

全体像と局所的なディテールの両方を同時に表現するこ

とを実現している。これにより、低密度なサンプリング

点であっても物理法則に則った学習が可能となり、計算

負荷を抑制しつつ高速な収束と高精度な予測が期待され

る。特に、地形情報を K-Planes に事前学習させる手法は、

地形の複雑性や不連続性を効果的に捉え、物理的に整合

した浸水特性を再現する上で重要な役割を果たす6)。 
表-1 は、モデル構成および利点・欠点の観点から、

PE（従来までの手法）と K-Planes（本研究で扱った手

法）を比較したものである。PE は計算負荷が高くリア

ルタイム解析に課題を残すが、K-Planes はグリッド構造

による特徴量の保持により、実装の複雑さとメモリ消費

というコストを払うことで、「高速な収束」と「複雑地

形への追従性」という性能を獲得している。 

 

3. モデルを利用した検証例 

 
(1) サンプリング地点条件の検討 

本手法による水位計算結果の妥当性を評価するため、

実際の河川地形データ（図-4 参照、1.4 km ×3.8 km の範

囲）及び過去の洪水イベントを模した数値解析結果を学

習データとして用い、モデルの検証を行った。 
実地形のデータセットは北海道のある流域の DEM デ

 
図-2 モデルの構成（概略図） 

 

 

図-3 K-Planesの概略 
a) 3次元上にある物体の位置（黄色の丸）を b) 2次元

平面に投影し、粗い階層（S=1）と細かな階層

（S=2）のそれぞれの 4 隅から値を拾って補間する。

最終的に、c) 複数の階層から得られた特徴量を連結

してベクトルとして格納する（全体像とディテール

の両方が学習可能となる）。 
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ータを元に作成し、二次元氾濫解析ソフトウェア iRIC 
Nays2DFlood（以降，iRIC）を用いて計算を実施し、外水

氾濫の状況を仮想的に作り出した。なお、計算に要した

時間は約 40 時間であった。この計算結果をランダムな

地点（128 地点、200m四方に 1地点観測する程度のスケ

ール感）で疑似観測し、未観測地点の水位の時系列変動

が予測・再現できるかを確認することとした。  
学習段階では、観測地点を128地点（200 m四方に1地

点程度）に固定して行い、検証時にはPINN損失を評価

するサンプリング地点の密度を変化させてPINNsの計算

を実施することとした。具体的には、ケース(a)では80 m
四方に1点のサンプリング地点（計806点)、ケース(b)で
は320 m四方に1点のサンプリング地点（計80点）を与え、

それぞれのデータで比較した。なお、正解データ（GT: 
Ground Truth）には、iRICによる数値解析結果（流況、水

深等）を用いた。 
 

(2) 水深結果の比較と考察 

図-5 にサンプリング密度の違いによる水深分布の例

を示す。1ステップは 5分で、上から順に 100分後、150
分後、200分後の浸水範囲と水深分布が見てとれる。 
高密度サンプリングでは、K-Planes、PE の両手法とも

に、正解データ（GT）と比べて浸水の範囲や水深分布

をよく捉える傾向にあった。特に K-Planes を用いた場合

は、氾濫原の広がりに比べて細長く水深が深くなる箇所

（図中央の河道部分）でも PE に比べて再現性が高くな

る可能性を示せた。 
また、低密度なサンプリング条件下においても、K-

Planes 導入モデルは河道沿いの水深分布や全体的な浸水

範囲の傾向を良好に捉えることが確認された。一方、

PE では、河道部分でやや不自然な水深分布（とくに低

密度の Step30、Step40）となるなど、正解データとの差

異が大きくなる傾向が認められた。なお、いずれのケー

スも計算出力は約 5分であった。 
以上から、K-Planes を導入した PINNs は、サンプリン

グ地点が限られる条件下において、高い再現性を持ち、

数値計算よりも高速に処理でき、浸水深の推定精度向上

に寄与することが確認された。 
 

4.  まとめと今後の展望 

 
本研究では、K-Planes を導入した PINNs により、観測

地点が限定的な条件下においても高精度な浸水深推定の

実現を図った。検証の結果、提案手法は従来手法

（PE）に比して精緻な再現性を示し、データの希薄さ

に対して一定の頑健性を有することを確認した。 
本研究で得られた主な成果および今後の展望を以下に

まとめる。 
・計算の高速化と物理的妥当性の確保：数値解析で約

40時間を要した氾濫計算を 5分程度に短縮し、損失関

数に運動方程式を組み込むことで、物理的に妥当な浸

水深推定が可能であることを確認した。 
・低密度計測データの有効活用：80 m 四方(高密度)と

320 m 四方(低密度)の比較検証により、K-Planes モデル

が観測地点の少ない条件下でも高い再現性を示し、効

率的な観測網設計に寄与する知見を得た。 
・地形情報の事前学習による複雑地形への対応：K-

Planes に地形情報を事前学習させる手法により、堤防

などの不連続な地形条件を考慮した浸水解析の実現可

能性を示した。 
・サロゲートモデルの開発と学習の高度化：現在、洪水

浸水想定区域の推定に利用された氾濫解析データ 1 万

ケース以上を学習データとし、数値計算の代替となる

サロゲートモデルの開発を進めている。これにより不

確実な地形条件に対して、より汎用的かつ堅牢な学習

表-1 PEとK-Planesとの比較 
比 較

項目 
PE（従来までの手

法） 
K-Planes（本研究で扱

った手法） 

基 本

構 造 

・時空間座標を直

接利用（座標は計

算式の変数として

利用） 
・全情報をネット

ワーク重みで表現 

・座標を複数の２次元

平面格子に投影（座標

は場所探しとして利

用） 
・各平面から得た特徴

量を結合 

入 力

次 元 4次元 (t, x, y, z) 

3次元 (t, x, y) 
※z（標高）は K-Planes
の[x,y]平面に事前学習

させ固定 

利 点 

・構造が非常に単

純で、実装が容易 
・メモリ消費が少

ない 

・計算速度の高速化 
・複雑地形の再現性が

高い（地形を事前学習

するため） 

欠 点 

・高精度確保のた

めには、密なサン

プリング点の必要

性 
・計算量が膨大

で、リアルタイム

解析時には課題 

・モデル構造が複雑で

あり、実装難易度が高

い 
・グリッドデータ（特

徴ベクトル）の保持に

よる大容量のメモリ消

費 
 

 

図-4 地形条件 
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モデルの構築でき、確率的に氾濫予測が可能となるこ

とを目指している。今後、効率的な観測網設計や防災

計画への活用、リアルタイムな氾濫情報への展開が期

待できる。 
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図-5 水深の計算結果の例（部分図） 
 

a) 高密度（80 m四方に 1地点） 

b) 低密度（320 m四方に 1地点） 
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