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 寒冷地河川において冬期に形成された河氷は、気温上昇や降雨に伴って下流に流れ、河道内

に堆積するアイスジャム現象を引き起こし、河道閉塞による氾濫、河道内での人身事故等の原

因になることがある。これらの被害を未然に防ぐうえで、アイスジャムの発生状況を迅速に把

握することは重要である。本報では、既往研究で開発したアイスジャム検知モデルの課題点を

踏まえ、新たなモデル開発を検討した成果について報告する。 
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1.  はじめに 

 寒冷地の多くの河川では、冬期の気温低下に伴い河道

内に河氷が形成されて結氷する。これらの河氷は、気温

の上昇や降雨、河川流量の増加により、融解および破壊

されて下流に流下する1)。この流下した河氷は蛇行部、

勾配変化点等の流速が小さい箇所や川幅の狭くなる箇所

等で堆積するアイスジャム現象を引き起こすことがある

（図-1）。アイスジャム現象は、急激な水位上昇や浸水

被害、アイスジャム決壊時の流下河氷による巻き込まれ

事故等の原因となる2)。図-2に既往文献2)3)4)5)6)7)で報告され

ている過去のアイスジャム発生箇所を示す。図-2から、

北海道内では広く様々な河川でアイスジャムが発生して

いることが分かる。特に、赤丸の地点はアイスジャムに

よって現場で被害が生じた地点を示している。例えば、

十勝川水系浦幌川では、2018年3月上旬に大規模なアイ

スジャムが発生している。このとき、朝日樋門のゲート

付近に河氷が堆積したことで、排水障害が生じ、排水ポ

ンプ車による内水排除作業が実施されている2)。また、

同年に石狩川水系辺別川では、護岸工事現場の作業員が

アイスジャムの決壊に巻き込まれ死亡する事故が発生し

ている2)。 

アイスジャム発生時の迅速な危機管理対応を行うため

には、発生状況（いつ・どこで発生したか）を早期段階

で把握することが重要である。実際に現場の対応でも、

既設のCCTV及び水位データの確認やUAVによる空撮等

を行い、発生状況の監視を行った事例がある8)。しかし、

北海道のように河川延長が長く、事務所職員や巡視員が

限られる中で、人が常時監視することは難しい。このよ

うな背景のもと、筆者らはAIを用いた画像解析によって

アイスジャムの発生状況を自動で検知できる効率的な監

視手法を開発してきた9)。しかし、既往の監視手法を冬

期のCCTVに適用した結果、環境光等の影響で誤検知が

図-1 アイスジャム発生後の河道内の状況  

図-2 過去のアイスジャム発生箇所（●：被害報告

あり、●：被害報告無，発生箇所は既往文献で報告

さ れ て い る 箇 所 の み 表 示 ）  背 景 地 図 は

OpenStreetMap 使用 
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発生することが実用上の課題であった（図-3）。そこで

本研究では、実用性を向上することを目的に、既往モデ

ルの構成を改良した高精度な手法を検討した結果を報告

する。 

 

2.  監視手法の概要 

2.1   モデルの全体構成 

 本研究で開発したアイスジャム検知モデルの判定フロ

ーを図-4に示す。本モデルは、大きく分けて以下の3つ

の処理を行い、最終的にアイスジャムを検知する構成と

なっている。各処理では、（1）入力画像からの河氷と

水面の抽出、（2）氷の移動量の計算、（3）画像の質感

情報による分類を行っている。このように複数の手法を

組み合わせることで、検知対象の画像情報を段階的に抽

出し、単一のモジュールを使うよりも安定した検知性能

を確保できるようにした。 

 

2.2   河氷と水面の抽出 

検知処理の第一段階として、入力画像から河氷と水面

の領域を正確に抽出する必要がある。本研究では、これ

らの抽出手法として、深層学習ベースのセマンティック

図-4 アイスジャム検知モデルの全体構成 

図-3 既往のAI検知モデルによる誤判別の例 

（図中の白色の部分でAIがアイスジャムを検知したことを表している） 
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セグメンテーションモデルであるDeepLab v3+10)を採用し

た。なお、既報4)でも、DeepLab v3+を用いて河氷と水面

を抽出したが、「水面」と「その他の領域」の識別しか

できないため、あらかじめ低水路部分をマスクしないと

適用できなかった。そのため、運用時にカメラの画角変

更や監視箇所の変更があった際は、マスク画像をその都

度作成する必要があった。これに対し、本研究では、

「河氷」、「水面」、「その他の領域」の3つを識別可

能なモデルを開発した。具体的には、実際のCCTVの静

止画像と画像生成AI (Stable Diffusion11)) で人工的に作成し

た生成画像に、河氷、水面、その他の3クラスのアノテ

ーションを施したうえで、DeepLabv3+に学習させた。学

習済みモデルによる抽出結果の例を図-5に示す。図中の

左側の画像は入力画像であり、右側の画像はDeepLabv3+

による河氷と水面部分の抽出結果を示している。本結果

から、河氷と水面のピクセルを概ね適切に抽出できてお

り、背景領域（積雪等）の紛らわしい箇所の誤検出も見

られなかった。さらに、マスク処理不要となったことで、

運用時の画角変更や監視箇所の変更にも自動で対応でき

るため、効率性の向上にもつながると考えられる。 

 

2.3   氷の移動計算 

 アイスジャムの決壊や河氷群の流下を検知するために、

DeepLab v3+で連続画像(To, T1)を分析し、河氷と水面を

抽出した結果を基に、以下の式で河氷の移動率を計算し

た。 

𝑀 =
𝐴𝐶
𝐴𝑇

 

M; 河氷の移動率、AC: 「水面から氷 」または「氷から水

面 」へ状態が変わった領域の合計、AT: T1画像において

「水面または氷」と判定された全領域である。検知対象

画像の例を図-6に示す。大規模な氷塊が決壊や流下によ

って移動した場合、このように画像中の河氷と水面の領

域が大きく変化する。ここで、河氷の移動率Mの閾値は、

これらの実画像に試行的に適用した結果に基づき、M≧

35%とした。 

 

2.4   質感分類 

画像の質感情報に着目し、アイスジャム発生時の凹凸

のある質感と平常時の河氷や水面の質感を抽出し、アイ

スジャムの発生有無を判別した。具体的には、図-4に示

すように、DeepLab v3+で抽出した河氷と水面の領域に、

事前学習済みのResNet5012)（ImageNetという約128万枚の

膨大な画像データセットで事前に訓練されたモデル）を

適用することで、質感情報を抽出する。さらに、ResNet

で抽出した質感情報を分類器であるMLP（Multi-Layer 

Perceptron）に渡し、アイスジャムと平常時の2クラスで

画像分類を行う構成とした。 

ResNet50によって抽出した画像特徴量は、高次元のベ

クトルデータ形式のため、人間の目で見ても、アイスジ

ャムと平常時の特徴の違いを適切に抽出できているかは

確認することが難しい。そこで、多次元情報を2次元空

図-6 氷の移動計算における検知対象の画像 

図-5 AI（DeepLab v3+）による河氷と水面の抽出結果の例 
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間 に 圧 縮 す る t-SNE （ t-distributed Stochastic Neighbor 

Embedding）という次元削減アルゴリズムを用いて、

Resnetによる特徴量抽出結果の妥当性を確認した（図-

7）。図-7に示す赤色のプロットはアイスジャム画像、

青色のプロットは平常時画像の特徴量を2次元空間に可

視化した結果を表している。なお、図-7のDemension 1と

Dimension 2に物理的な意味は無く、データの類似性を表

現する物差しとなっている。本空間上でプロット同士の

位置が近いほど、画像の類似性が高いことを示している。

この図から、アイスジャム画像のプロットは、図中の上

部に集中的に分布し、平常時の画像は、図中の左下の部

分に集中しており、分布範囲は、概ね明確に分かれてい

ると言える。このことから、ResNetによってアイスジャ

ムと平常時の画像の違いを表現できていると判断した。

一方で、数枚の平常時画像は、アイスジャム画像の分布

する右上に位置しているものも見られる。これらの画像

には、少量の河氷の破片が流れており、ResNetによる質

感情報の抽出結果から判別することが難しい画像と推察

される。 

 

3.  本手法の検知精度 

3.1   検証方法 

構築したモデルの性能を評価するため、実際の河川監

視カメラで撮影された画像データセットを用いて検証実

験を実施した。データセットは、平常時とアイスジャム

発生時の画像を含む約 700枚の画像から構成され、それ

ぞれに正解ラベル（アイスジャムまたは平常時）が付与

されている。 

精度評価には、適合率、再現率、F 値の指標を使用し

た。適合率が大きいほど、モデルによる空振り（誤って

アイスジャムと検出）が少なく、再現率が大きいほど、

モデルの見逃し（アイスジャムを検知できない）が少な

いことを表している。F 値は適合率と再現率のバランス

を表現する指標である。 

 

適合率=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

再現率=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹値=
2 ∙適合率 ∙再現率

適合率+再現率  

ここで、TP：実際に変化があり予測も変化ある場合、

TN：実際は変化なし予測も変化なし、FP：実際は変化

なし予測は変化あり、FN：実際は変化あり 予測は変化

なしである。 

図-7 t-SNEを用いたResNetによる質感情報の可視化 

（●:アイスジャム画像, ●:平常時画像） 

プロット間の距離が近いほどResNetで抽出した特徴が似ていることを示している 

表-1 検証用画像に対するモデルの予測結果 
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3.2   検証結果 

表-1にモデルの検証結果を示す。表-1から、TPが188

枚、TNが458枚、FPが94枚、FNが94枚であり、F値は

79.6%と比較的高い値であった。 

図-8に代表的な検証結果の例を示す。図-8(a)は平常時

の画像を正しく判別できた例である。これらの画像は、

既往モデルで誤検知が生じていた光の影響による水面の

反射や影の動きが生じている画像である。本モデルでは

これらの画像についても正しく判別していた。なお、本

モデルの適合率は98.9%と高い値であり、平常時の画像

に対する誤検知を一定程度抑制できていると考えられる。

図-8(b)はアイスジャムを検知できなかった例（見逃し例）

であり、モデルの再現率は66.7%であった。これらの画

像では、カメラから遠い箇所でアイスジャムが発生して

おり、アイスジャム特有の質感情報を詳細に抽出するこ

とが難しいことが誤検知の要因と考えられる。 

 

4.  まとめ 

本研究では、河川におけるアイスジャム現象を自動的

に検知するAIモデルを開発した。特に、既往モデルの課

題であった光の影響による誤判別を改善するため、河氷

と水面の抽出、氷の移動計算、質感分類を統合した判別

手法を開発した。その結果、開発したモデルは誤判別を

大幅に低減し、F値79.6%、適合率98.9%、再現率66.7%と

比較的高い精度でアイスジャムを検知できることが明ら

かとなった。特に、影の動きや水面の反射による誤検知

が改善されたことは、本手法の有効性を示す重要な成果

である。 

今後の課題としては、遠方のアイスジャム検知精度の

向上が挙げられる。また、今回の精度検証では扱ってい

ない多様な画像についても検証・モデル改良を行う必要

がある。特に、濃霧や吹雪などの視認性が低下する気象

条件下での実画像に対しても安定した性能を確保できる

よう、今後検討を進めていく予定である。 
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