第66回(2022年度) 北海道開発技術研究発表会論文

アンサンブル気候データを用いた 大雨の時空間パターンの把握手法

国立研究開発法人土木研究所 寒地土木研究所 水環境保全チーム 〇星野 剛 北海道大学大学院 工学研究院 山田 朋人

大雨による被害のパターン(被害の種類、規模、箇所、タイミングなど)は降雨量だけでな く降雨の時空間的な分布により決まるため、効果的な大雨災害の対策のためには様々な大雨パ ターンの事前想定が必要となる。しかしながら、降雨パターンは多岐にわたることから網羅的 な把握は難しく、経験した大雨事例が少ない地域などでは十分な事前想定は難しいことが予想 される。これに対し、数千年分の大雨事例が含まれるアンサンブル気候データを活用すること で、地域で起こりうる大雨パターンを想定可能となる。本稿では著者らの提案する時空間的な 特徴に基づく大雨事例の分類手法を解説する。また、同手法をアンサンブル気候データに適用 し、十勝川流域における大雨の時空間パターンの特徴とその気候変動影響を説明する。

キーワード:大雨、降雨パターン、アンサンブル気候データ、気候変動、適応策、十勝川

1. はじめに

令和4年に公表された気候変動に関する政府間パネル (IPCC)第6次評価報告書¹にも述べられているように日 本を含む世界の広い地域において気候変動に伴う洪水や 旱魃のリスクの増大が危惧されている。近年、我が国に おいても大雨による甚大な被害が各地で発生している上、 気候変動による外力の増大も予測されており、大雨災害 対策は喫緊の課題となっている。近年では合計数千年に およぶアンサンブル気候データ^{例えば2}が作成され、それ を活用するための科学的知見を両輪とした新たなリスク 評価や適応策の検討が進められている^{3,4}。このような 気候変動を踏まえたリスク評価が行政の検討^{3,0}でも活 用され始めるなど、新しい考え方による治水対策が模索 されている。

大雨による被害のパターン(被害の種類、規模、箇所、 タイミングなど)は降雨量だけでなく降雨の時空間的な 分布により決まる。このため、効果的な大雨災害の対策 のためには降雨量だけでなく流域内での様々な大雨パタ ーンの事前想定が必要となる。しかしながら、降雨の時 空間的なパターンは多岐にわたるため、流域内において 起こりうる降雨パターンを網羅的に把握することは難し い。特に、過去に経験した大雨事例が少ない地域におい ては事前の大雨パターンの想定は難しいことが予想され る。これに対し、前述のアンサンブル気候データを活用 することで、数千年分のデータから起こりうる大雨パタ ーンを把握可能となる。しかしながら、膨大な大雨イベ ントすべてに対する被害や対策の検討は膨大な計算を要 することから大雨の時空間的な特徴を表す適切な降雨パ ターン分類手法が必要となる。

本稿では著者らの提案する大雨事例の時空間的な特徴 に基づく分類手法⁷を解説する。また、同手法をアンサ ンブル気候データに適用し、十勝川流域における大雨の 時空間パターンの特徴とその気候変動影響を説明する。

2. 降雨パターンの分類手法

著者らの提案する降雨パターンの分類手法の手順を図 -1 に示す。本手法は時間的なパターン分類、空間的な パターン分類、時空間的なパターン分類の3つで構成さ れる。以降で各分類手法の概要を述べる。入力する降雨 データはグリッド状かつ時系列の降雨データ群を想定し ている。本分類手法の詳細に関しては参考文献⁹を参照 されたい。なお、本分類手法のソースコードおよびサン プルデータは以下で公開しており、pythonで実行可能で ある(https://data.mendeley.com/datasets/p3dwwn6r43)。

(1) 時間的な降雨パターン分類

時間的な降雨パターンの分類には対象流域の流域平均 降雨の時系列データ(ハイエトグラフ)を用いる。対象 とするすべての降雨イベントのハイエトグラフを作成し、 対象時間(次章の事例では72時間を設定)における流域 平均降雨量が最大となる期間を算出する。次に、各降雨 イベントのハイエトグラフの類似度をRMSE (root-meansquare error)に基づき算出する。なお、この計算におい て対象期間内における強い雨の出現タイミングの違いが 類似度に与える影響が大きいことから(例えば、2つの

HOSHINO Tsuyoshi, YAMADA Tomohito

図-1 降雨パターン分類のフロー図

降雨イベントの強い雨の発生する時間帯の降雨波形が似 ていたとしても期間の前半か後半に強い降雨が発生する かで類似度は大きく異なる)、その影響を緩和するため に、時間をずらしながら類似度を算出し、最も類似して いる組み合わせを2イベントの類似度として採用する。 降雨データ群のすべての組み合わせで降雨イベント間の 類似度を算出し、距離(類似度)行列を作成する。次に、 この距離行列を用いて階層型クラスター分類を実施する ことで、時間的な降雨パターンの特徴に基づいた分類が なされる。

(2) 空間的な降雨パターン分類

空間的な降雨パターンの分類手順は時間的な降雨パ ターンの分類と同様であるものの、降雨データの変換お よび類似度の計算方法が異なる。類似度の算出のために、 降雨データ群を時間的な分類で定義した降雨量が最大と なる期間における累積降雨量に変換する。降雨イベント 間の類似度は流域内の各グリッドの積算降雨量を用い、 RMSEに基づいて算出する。これにより、流域内の降雨 の空間分布の類似度を距離として表す。次に時間的な分 類と同様に距離行列を作成し、階層型クラスター分類に より分類する。

(3) 時空間的な降雨パターン分類

時空間的な降雨パターンの分類は時間的な分類と空間的な分類の結果を組み合わせ、図-1に示すように時間・空間的な分類結果(クラスター)をそれぞれ行と列とすることで分類する。これにより、時間と空間の両者の特徴を反映した降雨イベントのクラスター分類が実現する。

図-2 +勝川流域(太実線は十勝川流域、細実線はサブ流域 を表す。図中の白丸は流量観測点を表す。カラーバー はd4PDF-5kmの作成に用いた標高を示す。)

図-3 時間的な降雨パターン分類の結果(灰色線はクラスタ ーに該当する降雨イベントのハイエトグラフ、青線は 該当する降雨イベントのハイエトグラフの平均値、赤 線は代表的な降雨イベント(平均値と最も類似してい る降雨イベント)のハイエトグラフを表す。右上の数 値は該当イベント数、括弧内は4℃上昇気候のイベン トが占める割合を示す。Hoshino and Yamada, (2023)⁷よ り引用。)

3. 降雨パターン分類手法の適用

(1) 対象流域・降雨データ

前述の降雨パターン分類をアンサンブル気候データに 含まれる大雨イベントに適用し、十勝川流域(茂岩基準 地点流域;図-2)における降雨パターンを明らかにする。 観測された大雨イベントは限定的であることから、対象 とする降雨イベントはアンサンブル気候データの一つで あるd4PDF (the Database for Policy Decision Making for Future

図-4 空間的な降雨パターン分類の結果(各クラスターに該当するイベントの72時間積算降雨量の平均値を示す。右上の数値は 該当イベント数、括弧内は4℃上昇気候のイベントが占める割合を示す。Hoshino and Yamada, (2023)⁷より引用。)

図-5 時空間的な降雨パターン分類の結果(行方向は時間的な分類によるクラスター、列方向は空間的な分類によるクラスターを表す。(a)は該当する降雨イベント数、括弧内の数値は4°C上昇気候のイベントが占める割合を示す。(b)-(f)は十勝川流域内の各地点のピーク流量の平均値を示す。Hoshino and Yamada,(2023)⁷より一部引用。)

Climate Change)³を5-km解像度へと力学的ダウンスケーリ ングを実施したデータ⁸から選定した。同データのうち 過去(1951-2010年)の気候条件における年最大降雨3000 イベント、産業革命から4℃気温が上昇した気候条件に おける年最大降雨5400イベントを用いた。これらの降雨 イベントから、極値統計理論⁹の適用¹⁰により推定され た150年確率雨量相当の降雨イベント(72時間降雨量が 1800から249.1 mm)に該当する571イベント(過去気 候:88イベント、4℃上昇気候:483イベント)を分類の 対象とした。

(2) 分類結果

a)時間的な降雨パターン分類

時間的な降雨パターン分類により、4つのクラスター (T1-4)に分類した結果を図-3に示す。同図より降雨 波形の特徴ごとに分類されていることがわかる。T1は 最も鋭い波形を示しており最大の降雨強度が20 mm/hに 達している。T4は降雨ピークが10 mm/hと最も小さく、 降雨ピークの前にも降雨が生じていることから流量が大 きい時間が長く継続しやすい降雨パターンであると考え

HOSHINO Tsuyoshi, YAMADA Tomohito

られる。また、4℃上昇気候においては降雨ピークの大きいT1,2に属する降雨イベントの割合が高く(それぞれ95%、91%)、同程度の降雨量の大雨イベントであっても将来気候においてはピーク流量が大きくなりやすい降雨パターンの頻度の増加が示唆される。

b) 空間的な降雨パターン分類

空間的な降雨パターン分類により、10個のクラスター (S1-10) に分類した結果を図-4 に示す。同図より、ク ラスターごとに降雨の空間分布の特徴が異なることがわ かる。S1は流域の西側に降雨が集中し、S2-4は日高山脈 のある流域内の南西部に降雨が集中している。S7-10は 流域内の北側に降雨が集中しており、特にS8は大雪山系 における降雨が顕著である。また、S2-4においては4℃ 上昇気候の降雨イベントの割合が高い(それぞれ91%、 94%、90%)ことがわかる。

c)時空間的な降雨パターン分類

図-5(a)に時空間的な降雨パターン分類により4×10パ ターンに分類した際の各クラスターに該当する降雨イベ ント数を示す。同図より、降雨の時間・空間パターンに は関連があることがわかる。例えば、S2はT4と同程度 の頻度でT1が発生しやすいことから流域南西部におけ る大雨は時間的に集中する傾向にあることがわかる。逆 にS8はT1の割合が低く、T4の比較的長いことから長時 間継続する降雨により大雨となるパターンが多いことが

わかる。

(3) 降雨パターンとピーク流量との関係

時空間的な降雨パターンと各基準地点におけるピーク 流量の関係性を図-5(b)-(f) に示す。同図より、多くの 空間パターンにおいてT4が最もピーク流量が小さく、 T1が最もピーク流量が大きいことがわかる。これは時 間的な降雨パターンは地点を問わずピーク流量に影響す ることを示す結果である。これに対し、降雨の空間的な パターンはピーク流量が大きくなる地点に支配的な影響 を与えることがわかる。流域西側に降雨が集中するSIで は十勝川本川に位置する茂岩基準地点と帯広基準地点に おいてピーク流量が大きい。日高山脈に最も降雨が集中 するS3のパターンは札内基準地点のピーク流量が最も高 くなる。また、音更基準地点と利別基準地点はS8の降雨 パターンにおいてピーク流量が最も大きくなる。一方で、 降雨が広く分布するS6.S7.S9などはいずれの地点におい てもピーク流量が際立って大きくならないことがわかる。 このように時間と空間それぞれの降雨パターンの特徴に 基づいて降雨イベントを分類することで各降雨パターン が有する危険性(危険性の空間分布やその強度)を把握 できることが示された。

図-6 各クラスターに占める台風接近事例の割合((a)は台風が北海道に接近したイベントの割合を示す。(b)は台風が日本(北海 道・本州近辺)に接近したイベントの割合((a)に該当する事例を除く)を示す。(c)は(a)、(b)以外のイベントの割合を示す。 北海道(日本)に台風が接近した事例は左図の点線の範囲に台風が位置したかどうかで判定した。)

(4) 降雨パターンと気象要因との関係

分類された各降雨パターンと気象要因との関係性を分析した。各降雨イベントを台風が北海道に接近した事例、 台風が日本に接近した事例、それ以外の事例に分け、それらのイベントが各クラスターに占める割合を図-6 に示した。この分類は図-6左に示す範囲に台風が位置したかどうかで判別した。なお、台風の経路にはWebb et al., (2019)のデータ¹¹⁾を使用した。

該当するイベント数はそれぞれ278、93、200個であり、 半数近くを台風が北海道に接近した事例が占める。図-6(a) より、時間パターンT1、空間パターンS1-3に占め る北海道に台風が接近した事例の割合は80%以上と非常 に高いことがわかる。このような台風の接近に伴う日高 山脈沿いでの降雨の集中は過去に十勝川流域で大きな被 害をもたらした2016年の台風10号と同様であり、実際の 事例からも台風の接近により生じやすい降雨パターンで あることが判断できる。図-5(a) に示したように時間パ ターンT1、空間パターンS1-3において将来気候条件の降 雨イベントの占める割合が高い理由は4℃上昇気候にお いては台風が強い勢力のまま北海道付近まで北上しやす い[®]ことが要因であると思われる。また、図-6(c)より、 台風以外でもたらされる降雨は時間パターンT4に該当 する割合が高い。空間パターンではS7-10に該当する割 合が高く、降雨が流域の北側に集中するような事例は台 風以外の要因(前線、低気圧の通過など)により生じや すい傾向にあることがわかる。このように降雨の時空間 パターンは気象要因と関係性が強いため、気象要因--降 雨パターン---被害の一連の流れを関連づけて災害シナリ オとして整理できるものと思われる。

4. まとめ

アンサンブル気候データに含まれる大量の降雨データ を降雨の時空間な特徴に基づいて分類する手法を提案し た。分類された降雨パターンは流域内における河川流量 の特徴と密接な関係にあることが示された。これは降雨 パターンの分類により、流域内の危険性の地域分布や起 こりうる被害のシナリオを把握できることを意味する。 大雨による被害のシナリオはこれまでに地域が経験した 限定的な大雨事例からでは把握が難しかったことから、 アンサンブル気候データと降雨分類手法の組み合わせは 地域で発生しうる大雨災害のシナリオの網羅的な把握に 極めて有効だと考えられる。このようにして把握される 災害シナリオは流域内でのソフトおよびハードの防災対 策を進める上で重要となると考えられ、これらを活用し た防災対策に関する研究口も進められている。また、流 域全体でのリスク軽減を目指す流域治水においても流域 内で起こりうる降雨パターンの把握は極めて重要となる と考えられ、効果的な治水対策の検討に向けた今後の活 用が期待される。降雨パターンの分類手法のソースコー

ドおよび本稿で示した分類のデータは以下に公開しており、python環境の準備のみで簡単に利用することができる(https://data.mendeley.com/datasets/p3dwwn6r43)。今後、広く活用されることを期待したい。

謝辞:本研究の遂行にあたっては文部科学省「気候変動 予測先端研究プログラム」JPMXD0722680734、内閣府総 合科学技術・イノベーション会議の戦略的イノベーショ ン創造プログラム(SIP)「国家レジリエンス(防災・減 災)の強化」(管理法人:国立研究開発法人防災科学技 術研究所)、科研費基盤研究(B)22H01594、科研費若手 研究20K14832、オランダ企業庁「水のパートナー」プロ ジェクトの支援を受けた。また、創生プログラムのもと で作成された地球温暖化施策決定に資する気候再現・予 測実験データベース(d4PDF)を使用した。d4PDFにも とづく台風トラックデータは、Webbら(2019)により提供 されたデータを用いた。力学的ダウンスケーリングの実 施にあたっては令和2年度地球シミュレータ特別推進課 題および一般課題の支援により地球シミュレータを使用 した。ここに記して謝意を表します。

参考文献

- Caretta MA, Mukherji A, Arfanuzzaman M, Betts RA, Gelfan A, Hirabayashi Y, Lissner TK, Liu J, Lopez Gunn E, Morgan R, Mwanga S, Supratid S. 2022. Water. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., Rama, B. (eds.)]. Cambridge University Press. In Press
- 2) Mizuta R, Murata A, Ishii M, Shiogama H, Hibino K, Mori N, Arakawa O, Imada Y, Yoshida K, Aoyagi T, Kawase H, Mori M, Okada Y, Shimura T, Nagatomo T, Ikeda M, Endo H, Nosaka M, Arai M, Takahashi C, Tanaka K, Takemi T, Tachikawa Y, Temur K, Kamae Y, Watanabe M, Sasaki H, Kitoh A, Takayabu I, Nakakita E, Kimoto M. 2017. Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models. *B. Am. Meteorol. Soc.*, **98**, 1383–1398. https://doi.org/10.1175/BAMS-D-16-0099.1
- 3) Yamada TJ. 2019. Adaptation measures for extreme floods using huge ensemble of high-resolution climate model simulation in Japan, *Summary report on the eleventh meeting of the research dialogue*, 28-30, UNFCCC Bonn Climate Change Conference, Bonn, Germany.
- Ishii M, Mori N. 2020. d4PDF: large-ensemble and high-resolution climate simulations for global warming risk assessment. *Prog. Earth Planet. Sci.* 7. https://doi.org/10.1186/s40645-020-00367-7
- 5) 国土交通省水管理・国土保全局:気候変動を踏まえた治水 計画に係る技術検討会,2017.
- 6) 国土交通省北海道開発局,北海道:北海道地方における気候 変動を踏まえた治水対策技術検討会,2019.
- Hoshino T, Yamada TJ. 2023. Spatiotemporal classification of heavy rainfall patterns to characterize hydrographs in a high-resolution ensemble climate dataset. *Journal of Hydrology*, 617(PB), 128910. https://doi.org/10.1016/j.jhydrol.2022.128910

HOSHINO Tsuyoshi, YAMADA Tomohito

- Hoshino T, Yamada TJ, Kawase H. 2020. Evaluation for Characteristics of Tropical Cyclone Induced Heavy Rainfall over the Sub-basins in The Central Hokkaido, Northern Japan by 5-km Large Ensemble Experiments. *Atmosphere* (Basel). 11, 1–11. https://doi.org/10.3390/atmos11050435
- 森口繁一:確率表現関数の検定について—Kolmogorov-Smimov検定を考え直す—,日本統計学誌,第25巻,233-244, 1995.
- 10) Shimizu K, Yamada T, Yamada TJ. 2020. Uncertainty Evaluation in Hydrological Frequency Analysis Based on Confidence Interval and

Prediction Interval. Water, 12, 2554. https://doi.org/10.3390/w12092554

- 11) Webb A, Shimura T, Mori N. 2019. Global Tropical Cyclone Track Detection and Analysis of the d4PDF Mega-ensemble Projection, Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 75, p. I_1207-I_1212. https://doi.org/10.2208/kaigan.75.I_1207
- 12) 鈴木章弘、星野剛、山田朋人、山本太郎:アンサンブル 気候データを活用した事前防災と避難判断支援への取り 組み、水文・水資源学会/日本水文科学会 2021 年度研究 発表会要旨集、B-28、2021.