第67回(2023年度) 北海道開発技術研究発表会論文

鋼板接着補強床版アンカー部の損傷調査における 打音法の適用性について

(国研) 土木研究所 寒地土木研究所 寒地構造チーム 〇畠山 乃

角間 恒

蛯子 恭好

寒冷地における鋼板接着補強床版の点検・調査では、凍害等に起因するコンクリートの損傷 進行に伴うアンカー部の健全性低下を的確に把握することが求められる。本稿では、アンカー 部コンクリートの損傷調査手法の確立に向けた基礎的段階として、要素試験体の室内打音試験 を実施し、アンカー部コンクリートの状態と打音波形の時間周波数特性の関係性を基に、アン カー部の損傷調査における打音法の適用可能性を検討した。

キーワード:床版、鋼板接着、打音、時間周波数解析

1. はじめに

道路橋の鉄筋コンクリート床版(以下、床版)では、 昭和 39 年以前の基準によって設計された床版を中心に、 疲労損傷対策を目的にした下面の鋼板接着補強が行われ てきた。国土交通省北海道開発局が管理する道路橋では、 昭和 50 年頃~平成 10 年頃に本工法の採用実績が多く、 補強後の経過年数が 20~40 年に達したこれらの床版に おいて、現在、補強材の損傷が増加している¹。

著者らはこれまでに、北海道内で供用された鋼板接着 補強床版の損傷実態の調査¹⁾を行い、寒冷地特有の損傷 形態として、床版と補強材を一体化させるアンカー部に おけるコンクリートの凍害等の進行(**写真-1**)に注意が 必要であることを指摘している。一方で、外観目視では アンカー部の健全性を判断できないこと、打音による損 傷の検出精度については不明確な部分が多いことなどが 原因で、点検・調査時にアンカー部の状態を把握するに は大きな困難を伴うことを認識している。

本研究では、アンカー部コンクリートの損傷を効率的 かつ簡便に調査する手法を確立することを最終目標に、 その基礎的段階として、アンカー部の健全性調査におけ る打音法の適用性可能性を実験的に検討した。具体的に は、アンカー部を模した要素試験体を使用して室内での 打音試験を実施し、アンカー部の状態と打音波形の時間 周波数特性の関係性を調査した。

2. 打音試験方法

(1) 試験体

a) 概要

図-1 に打音試験に使用した試験体の概要を示す。本

※文献1中の写真を一部修正している

写真-1 鋼板接着補強床版アンカー部の損傷事例 ¹⁾

図-1 試験体概要

試験では、平面寸法 250mm×250mm、厚さ 120mm の鉄 筋コンクリート平板に補強材を接着して打音試験に供し た。試験体のコンクリートには JIA A 5308 に準ずるレデ ィミクストコンクリート(早強 24-12-20 N)を、鉄筋に は D13 (SD345)を、補強材には厚さ 4.5mmの SS400 材 を、打込み式金属系アンカーには M10 (SS400)を、接 着用樹脂には二液性エポキシ樹脂(混合粘度 2000± 1000mPa·s、20°C)を使用した。

試験体は合計 5 体製作し、2 体 (S-1、S-2) ではアン カー部コンクリートが健全な状態を、3 体 (D_r-1、D_r-2、 D_{II}-1) ではアンカー部コンクリートに損傷が生じた状態 を想定した。 D_r -1、 D_r -2、 D_{II} -1 におけるコンクリートの

(a) アンカーの打込み

(a) 健全(S-1、S-2を想定)

(b) 接着用樹脂の流し込み 写真-2 補強材の接着手順

(b) 損傷あり(D-1、D-2を想定) 写真-3 アンカー部の損傷状況

(c) アンカーキャップの設置

(c) 損傷あり(D⊩1を想定)

損傷は、フレッシュ状態のコンクリートに酸化カルシウ ムを主成分とする静的破砕剤を添加し、コンクリート中 の水との反応による膨張圧を利用して模擬的に導入した もの ²であり、静的破砕剤の添加量を調整することで、 コンクリートに導入する損傷の程度も変化させた(D-1 と Dr-2 は同一の状態、Dr-1 は損傷が大きい状態を想 定)。なお、実構造物でアンカー部のコンクリートに損 傷が生じているような場合には、同時に補強材やアンカ ーとコンクリートとの間に剥離が生じていることも想定 されるが、本試験体ではこれらを考慮していない。

b) 補強材の接着手順

本試験体では、作業性を考慮して鉛直下向きに補強材 の接着作業を行った。写真-2 に補強材の接着手順を示 す。まず、鉄筋コンクリート平板に径 10.6mm および長 さ 60mm のアンカー孔を削孔、深さ 40mm までアンカー を差し込み打込んだ後、コンクリート表面から 5.0mm の高さに補強材を設置して固定した。その後、補強材周 囲のコンクリート露出部から接着用樹脂を流し込み、試 験体に打撃による振動を与えることで、補強材、アンカ ー、コンクリートの間の隙間に樹脂を充填させた。実構 造物を対象にした鋼板接着補強工では、鋼板に設置した 小径孔から接着用樹脂を圧入するのが一般的であるが、 本試験においては、試験体1体当たりの接着面積が小さ く、樹脂の充填不良が生じる可能性が低いことを考慮し て、上記の方法を採用した。最後に、アンカー末端部 (露出部)に、二液性のエポキシ樹脂系パテ材を充填し た鋼製のアンカーキャップを設置した。

上記の接着作業は、コンクリートに損傷が導入された 後に実施しており、損傷進行と補強材接着の時系列が実 構造物に合致していない可能性がある。

tr軗冬州

項目	条件
打擊方向	鉛直下向き
打擊箇所	1) アンカーキャップ 2) アンカーキャップ撤去後のアンカー末端
打撃用 ハンマー	1) 橋梁点検用ハンマー(質量 220g) 2) 建築土木用鋼製ハンマー(質量 780g)
打擊回数	1ケース当たり3回

c) 試験体の損傷状況

試験体に導入された損傷を把握するため、上記(1)と 同様の方法で試験体を別途製作して、内部(切断面)の 損傷状況を目視観察した。これらの試験体では、接着用 樹脂に紫外線照射下で発光する蛍光染料を添加すること で、接着作業時の樹脂充填に伴うひび割れの閉塞状況を 観察しやすいようにしている。

写真-3 に、アンカー部のコンクリートの状態を目視 観察した結果を示す。写真より、健全状態を想定した試 験体(写真-3(a))において、コンクリートにひび割れの 発生は確認されなかったのに対し、アンカー部の損傷を 想定した試験体(写真-3(b)および(c))では、コンクリー トに複数本のひび割れが発生しているのを確認できる。 また、損傷ありの場合でも、D-1 および D-2 と D-1 で は明らかに損傷状況が異なっており、DI-1において、ア ンカー周囲のひび割れが多く、かつ、微細なひび割れの 周辺でコンクリートが著しく損傷した状態になっていた と推察できる。なお、D_I-1を想定した試験体において、 紫外線照射時にアンカー部のコンクリートが発光する様 子が確認されており、打音試験体でも、コンクリートに 発生したひび割れが接着用樹脂によって部分的に閉塞さ れていた可能性がある。

(2) 打音の収録方法

打音試験は、寒地土木研究所の実験室内において実施 した。表-1に打撃条件を示しており、試験体1体につき、 打撃箇所や打撃用ハンマーの種類の組合せを変えた4ケ ース、合計12回分の打音データを収録とした。ここで、 打撃箇所や打撃用ハンマーの種類を変化させたのは、ア ンカー部コンクリートの損傷を捉えやすい打撃条件を明 確にすることを目的にしたものであり、前者ではアンカ ーキャップの有無、後者ではハンマーの質量(橋梁点検 用ハンマー:220g、建築土木用鋼製ハンマー:780g)を 試験パラメータにした。

打音の収録には音声編集用フリーソフト Audacity (ver. 3.3.3)を使用し、アンカーから 150mm 程度の位置に配 置した単一指向性のステレオコンデンサーマイク (サン プルレート 44.1kHz、ビットレート 16bit、周波数特性 20Hz~20kHz) により収音して、wav ファイルとしてノ ートパソコンに取り込んだ。

3. 打音試験結果

(1) 時間周波数解析の方法

打音試験結果の分析に当たって、収録した音圧時刻歴 波形の時間周波数解析を行った。その際、波形データの 前処理として、1)ステレオ音声のモノラル音声への変換、 2)波形データの抽出(打撃によって音圧の励起が開始す る約 2.0msec 前から約 183msec 後までの合計 8192 デー タ)、(3)音圧振幅の正規化を行っている。

時間周波数解析は Morlet 関数をマザーウェーブレット とする連続ウェーブレット変換により行い、試験体毎に 得られたスカログラム(信号強度を時間と周波数の関数 として図化したもの)を比較した。なお、本研究におけ る連続ウェーブレット変換は、python (ver. 3.11.4)のラ イブラリ swan を用いて実施した。

(2)時間周波数解析の結果

図-2および図-3に、音圧波形データに連続ウェーブレット変換を適用して得たスカログラムを示す。本稿では、 各ケース3回の打音を行ったうちの代表的な結果を例示 しており、これらの時間周波数特性(以下、打音特性) を比較する。

a) アンカーキャップ上を打撃した場合

図-2(a)は、橋梁点検用ハンマーによりアンカーキャッ プ上を打撃した場合の打音特性であり、健全状態を想定 したS-1およびS-2では、いずれも周波数8~10kHz程度、 時間0.005scc以前に信号強度のピークが現れた。損傷の 発生を想定した3体では、試験体によって打音特性に差 異があり、D-1では、打音の励起時間がやや長くなる傾 向があることを除くと、S-1およびS-2と比較して打音特 性の差異は認められなかった。一方、D-2では、ピーク 周波数は前述の3体と同程度であるが、6kHz程度の波形 が比較的長い時間励起していることが明らかである。ま た、Dr-1では、周波数3~4kHz程度で信号強度がやや大 きくなるなど打音の周波数帯が広範囲に分布し、信号強 度のピークは不明瞭になった。

図-2(b)に、建築土木用ハンマーによりアンカーキャッ プ上を打撃した場合の打音特性を示す。本ケースでは、 いずれも周波数1kHz程度の信号強度が大きくなってい るが、これはアンカーキャップからの反射音の特徴を表 していると考えられる。アンカー部の状態の違いに着目 すると、損傷有無によって信号強度が大きくなる周波数 には差異があり、周波数1kHz程度の波形が卓越するS-1 およびS-2に対し、Dr-1、Dr-2、Dr-1では、それよりも大 きな周波数(4~7kHz)で信号強度の増大が見られた。 また、Dr-2では、明らかに波形の励起時間が長くなって いることもわかる。

b) アンカー末端を打撃した場合

図-3(a)に、アンカーキャップを撤去した状態で、橋梁

点検用ハンマーによりアンカー末端を打撃した場合の打 音特性を示す。本ケースは、本試験の範囲内で、アンカ 一部の状態に応じた打音特性の差異が最も隠微であった。 具体的には、いずれの試験体も信号強度の明確なピーク が現れず、打音の周波数が5~15kHz程度の広範囲に分布 した。また、Dr-2を除くと、損傷有無による打音波形の 励起時間への影響も明確ではない。

図-3(b)に、アンカーキャップを撤去した状態で、建築 土木用ハンマーによりアンカー末端を打撃した場合の打 音特性を示す。本ケースにおける打音特性は、図-2(b)に 示したアンカーキャップ上を打撃した場合に類似してお り、アンカーからの反射音と思われる1kHz程度以下の 信号強度が大きくなっている。また、損傷ありの場合に は、それよりも周波数が大きな波形の信号強度が大きく、 励起もやや長くなっている様子がわかる。

(3) 試験結果のまとめ

以上は、スカログラムに基づき打音の時間周波数特性 を簡易に比較した結果であるが、これらを総合すると、 打音波形の時間周波数特性(ピーク周波数や波形の励起 時間)の違いによってアンカー部コンクリートの状態の 違いを捉えられる可能性があると考えられる。また、橋 梁点検ハンマーより質量が大きいハンマーを使用した場 合、その中でもアンカーキャップ上を直接打撃した場合 に、損傷有無による打音波形の時間周波数特性の変化を 捉えやすくなることが推察される。

アンカー部コンクリートの損傷程度の影響に言及する と、本試験の範囲では、相対的に軽度な損傷(D_{P1} およ び D_{P2})は打音波形の励起時間の変化を、相対的に重度 な損傷(D_{P1})は打音波形のピーク周波数の変化をもた らした。これらの結果は、打音波形の時間周波数特性に 着目した損傷状態評価の可能性を示唆するのと同時に、 本試験で取り扱っていない損傷形態(例えば、補強材や アンカーと床版との剥離)の影響を適切に考慮すること の必要性を示すものである。複数の損傷形態が複合して いる場合の打音波形への影響については、アンカー部の 損傷調査における打音法の適用に向けた今後の課題とし て、引き続き、検討していく必要がある。

4. おわりに

本稿では、鋼板接着補強床版アンカー部におけるコン クリートの損傷調査手法の確立に向けた基礎的検討とし て、アンカー部を模した要素試験体の室内打音試験を実 施した。その結果、打音波形の時間周波数特性に着目す ることで、アンカー部コンクリートにおける損傷の有無 を判別できる可能性があることを確認した。

本打音試験は、損傷状態や打音環境等の試験条件が限 られる中で実施したものであり、今後は、様々な試験条 件に対する打音データの蓄積および分析を進め、現場実 装が可能な形で成果を取りまとめていきたい。

参考文献

- 角間恒、仁平陽一郎、畠山乃:積雪寒冷地における鋼板接 着補強床版の損傷調査、第66回(2022年度)北海道開発技 術研究発表会発表論文集、pp.714-719、2023.
- 2)角間恒、仁平陽一郎、畠山乃:模擬損傷部材による寒冷地 特有の損傷が進行した実橋床版の損傷性状に関する再現実 験、コンクリート構造物の補修、補強、アップグレード論 文報告集、第23巻、pp479-484、2023.