揮発性有機化合物(VOC)分解鉄粉MSI-N901T、 重金属吸着・不溶化鉄粉MSI-SH3について

JFEミネラル株式会社

VOC分解用鉄粉 MSI-E901T

1. VOC汚染の特徴と浄化工法の傾向

有機ハロゲン化合物(VOC)とは?

半導体製造業、金属加工業、クリーニング業の脱脂剤等として使用。

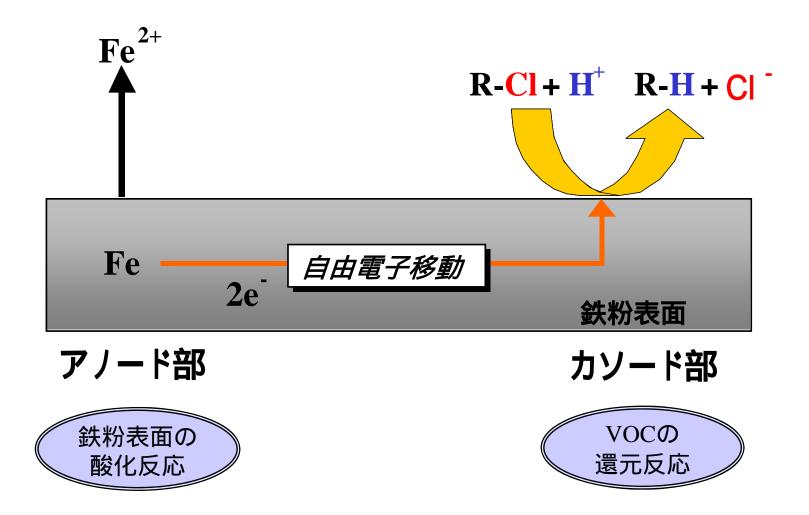
比重が水よりやや重く、水には溶けにくいが、水分以上に土壌中に 浸透しやすい。

不(難)透水層上に汚染源が存在し、この層上の地下水流れに沿って拡散しやすい。

浄化工法に関する最近の傾向

浄化の確実性|

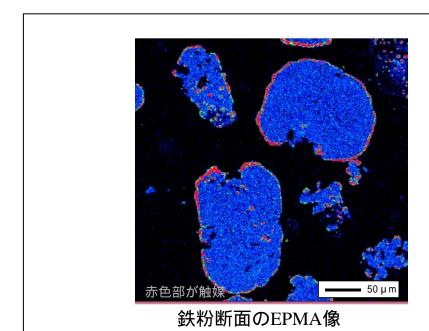
浄化期間の短縮

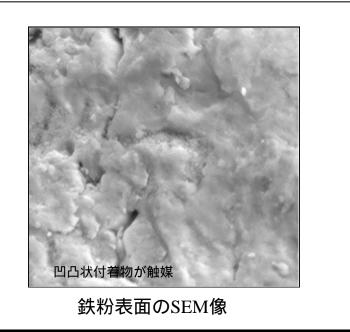

高濃度汚染への対応

2. 鉄粉によるVOC分解反応メカニズム

水の存在下でゼロ価鉄粒子の表面ではアノードとカソードの分極(局部電池)が生じ、下図のような酸化還元反応(水素化分解)による脱塩素が生じます。

3. VOC浄化鉄粉"MSI-N901T"に関して


VOC浄化鉄粉"MSI-N901T"は、純鉄の表面を水素化触媒でコーティングし、 Wの効果でVOCの分解速度を速めた鉄粉です。



機能 1 脱塩素 + 水素化触媒

機能 2 触媒・金属鉄間の局所電池反応

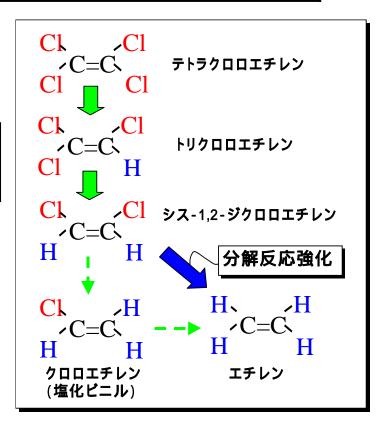
4. 新規鉄粉"MSI-N901T"に関して

Wの効果により、従来、分解が困難であったシス - 1,2 - ジクロロエチレンに対して、優れた分解性能を示します。

[鉄粉粒度分布%]

代表グレード	+500 µ m	+250 µ m	+150 µ m	+75 µ m	-75 µ m
MSI-N901T	0.0	0.4	31.1	38.5	30.0

[かさ比重]: 3.4g/cm3


[化学主成分測定結果]

代表グレード	T-Fe	M-Fe	С
MSI-N901T	98.1	94.6	0.07

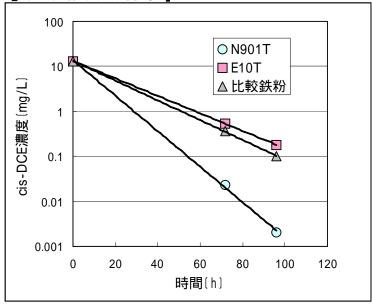
[重金属9種計量証明結果]

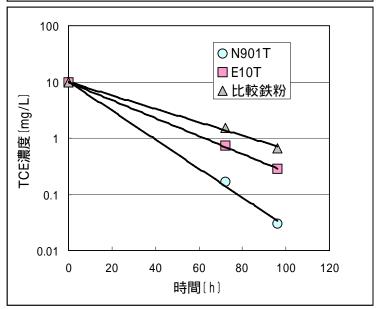
含有量	基準値以下
溶出量	基準値以下

鉄粉を土壌と見なした計量証明結果

5.新規鉄粉"MSI-N901T"の分解性能

[水系試験条件] 2種混合試験

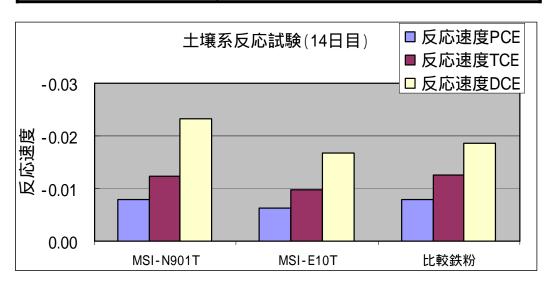

VOC対象物質と 初期濃度	TCE , cis-1,2-DCE:10mg/Lの 混合模擬汚染溶液	
溶媒種(水種類)	ミネラルウォータ	
バイアル瓶	30mL	
溶媒量	12mL	
鉄粉添加量	0.72g(対溶媒6wt%)	
雰囲気	ヘッドスペース∶窒素置換	
養生方法	室温,静置保管	
分析	JIS K0125 GC-MS HS法	


[反応速度比較]

	N901T	E10T	比較鉄粉
cis-DCE	-0.092	-0.045	-0.051
TCE	-0.060	-0.028	-0.037

() E10T:JFEミネラルの旧式浄化鉄粉

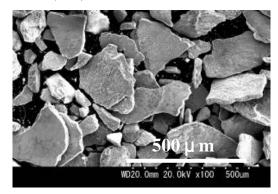
[水系試験結果]



6. 新規鉄粉"MSI-N901T"の分解性能

[土壌系試験条件] 3種混合試験

VOC対象物質と 初期濃度	PCE , TCE , cis-1,2-DCEの土壌 溶出量が:100~200mg/Lになる ように調整した模擬土壌
媒体種(土壌種類)	関東ローム
バイアル瓶(褐色)	50mL
鉄粉添加量	対土壌5wt%添加 , 土壌と混合
雰囲気	空隙無し, PTFE栓
養生方法	室温,静置保管
分析	環告18号(土壌溶出試験)



重金属吸着·不溶化用鉄粉 MSI-SH3

1.MSI-SH3の物性

1. 硫酸鉄()で表面処理を施した鉄粉

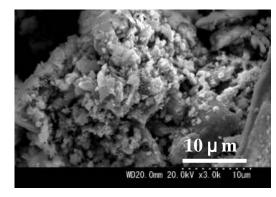


図 鉄粉表面のSEM電子顕微鏡写真 (左:100倍、右:3000倍)

2. 代表成分值

単位:%

Fe	0	Mn	С	SO4
> 75	> 15	0.6	0.2	0.2

3. 代表粒度分布

粒径(mm)	1.0	0.5	0.3	0.15	0.106	0.075	0.045
通過質量(%)	0.0	2	32	24	18	17	7

D50: 0.12mm

4. 比表面積

> 25,000cm $^{2}/g$ (BET法)

5.かさ密度

2.5g/cm³ (30回タップ)

2.MSI-SH3の特徴

鉄粉であるため

- 1. 粒径が細かすぎず、比重が高いので飛散しにくい。
- 2.Feの溶解が長期間にわたり持続するため吸着持続性が高い (吸着材料としての性能が高い)
- 3.pHが中性であるため、周辺環境への影響がない。 表面処理により
- 1. 比表面積が未処理の10倍以上となり、反応性・吸着性能が向上。
- 2.鉄塩処理を施しているため初期反応性が高い。

3. 各種重金属の吸着能評価 (バッチ試験による吸着等温線評価)

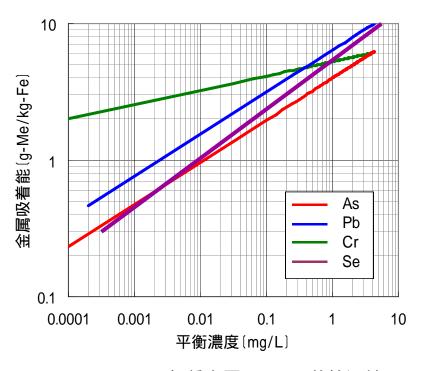


表 1 SH3の平衡濃度:0.01mg/l時の 各種金属イオン吸着能

二事却只	小小 製 板	吸着能
元素記号	状態	(g/kg)
As	AsO ₂	0.96
Pb	Pb ²⁻	1.55
Cr	Cr ₂ O ₇ ²⁻	3.25
Se	SeO ₃ ²⁻	1.02

図1 SH3の各種金属イオン吸着等温線

評価方法

各種金属イオン所定濃度のミネラル水にMSI-SH3を所定量を加えて6時間振とう。 静置後の上澄液を0.45 µ mのメンプレンフィルターでろ過。 島津製作所Z5000 フレームレス原子吸光光度計にて残留金属イオン量を測定。 吸着後の液相濃度と吸着量・吸着材添加量よりフロイントリッヒ型の吸着等温線を作成。・・・図 1 吸着等温式より平衡イオン濃度が0.01mg/l時の単位吸着材当たりの吸着金属量を計算。・・・表 1

4. 亜ヒ酸イオンの吸着能評価 (カラム通水法による連続評価)

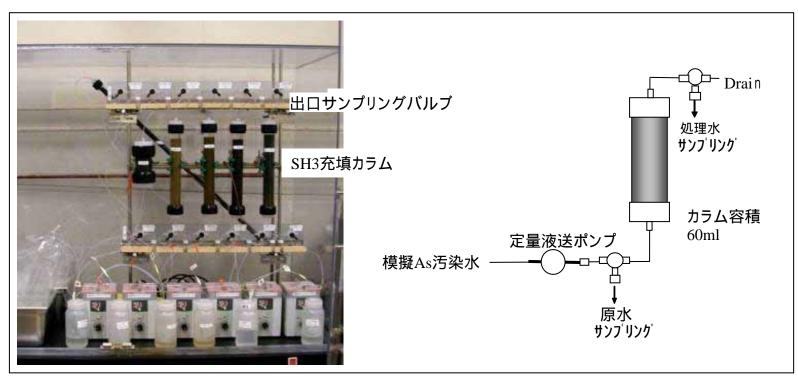


図2 カラム試験図

試験条件

カラム: 20 × 200mm (容積60ml)

充填材: MSI-SH3(20g)、アンスラサイト(30g)

模擬汚染水: Asとして2mg/lに調整したNaAsO2溶液(ベース:ミネラル水)

通水速度: 15ml/hr 線速度:12cm/hr(空隙率40%)

液送ポンプにより上向流で通水、カラムの前後でサンプリングを行い、AASにてAs濃度を定量。

5. 亜ひ酸イオンの吸着試験結果

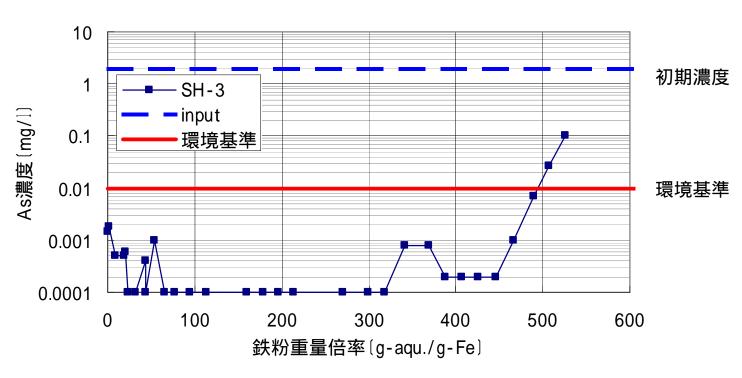
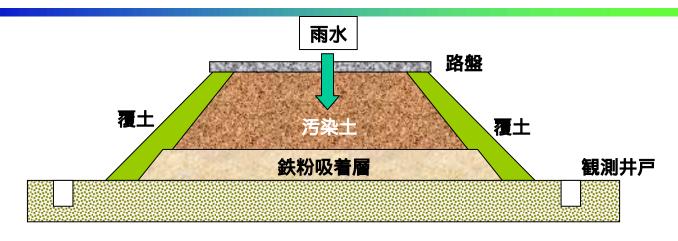


図3 カラム吸着後の処理水中のAs濃度挙動


横軸: 鉄粉質量に対する通過水量の比

破過時の累積吸着As**量** 1.05mg/g-Fe

ひ酸の場合は吸着能はさらに増大

6.吸着層工法適用時のシュミレーション(Asの場合) 🔾

耐久年数 = 鉄粉のひ素吸着能力(量) / 吸着層を透過する汚染水の累積ひ素量 計算式 Y = H·W·1000·C / ((F/1000)·Co·R)

北海道の年間平均降水量	F(mm/年)	1150
吸着層への透過水比率	R	0.3
吸着層厚(1)	H(m)	0.5
吸着層中鉄粉比率	W(kg/m3)	20
透過水中砒素濃度	Co(mg/m3)	100
鉄粉の砒素吸着能	C(mg/g)	0.96

(0.1mg/lと仮定)

[試算結果]

耐久年数	Y(年)	278
------	------	-----

まとめ

VOC分解鉄粉 MSI-E901T

- ·VOCの分解性能が高く、従来よりも浄化期間が大幅に短縮できる鉄粉である。
- ・分解性能が高いので水処理用、地下水浄化用にも利用可能。
- ・他社鉄粉よりも安価。
- ・開発1年弱、4案件で900トン以上を受注。 (札幌市殿からも受注、浄化完了)

重金属吸着·不溶化用鉄粉 MSI-SH3

- ・効果の持続性が高く、吸着用材料として、吸着層工法での利用が可能である。
- ・ひ素、鉛、セレン、6価クロムの複合汚染に対応できる。
- ・施工時のハンドリング性がよい(比重が高く、微粉が少ないため飛散が少ない)

その他

- ・重金属(ひ素、鉛、6価クロム、水銀、シアン、フッ素、ほう素)不溶化用MgO系 材料をラインアップ。
- ・上記4成分に加えフッ素、ほう素も吸着する鉄粉を今年中に商品化の予定。