地震津波で発生する結氷・流氷の河川遡上について

阿部孝章*1 吉川泰弘*2 矢部浩規*1

1. はじめに

積雪寒冷地域における雪や氷にまつわる問題は、土木工学 の様々な分野で登場する。沿岸域における接岸した氷による 害は、狭い場所でのアイスジャムや構造物前面でのパイルア ップなど、構造物に損傷などの被害をもたらすため古くから 寒冷な気候の国々において認知されてきた。それ故現象の解 明や対策技術の検討については多くなされており、具体的な ガイドライン等の策定に反映されている。

さて、日本列島は環太平洋造山帯の一部をなしており、地 震津波の常襲地帯である。上記のような寒冷地における氷の 害と、津波災害が重畳した場合の検討も従前よりなされてお り、これは過去1952年3月に発生した十勝沖地震津波が北海 道太平洋岸の広い範囲で被害をもたらした^Dためだと考えら れる。例えば、佐伯ら²や高橋ら³による津波漂流氷板群の実 験的な検討や木岡ら⁴による氷板衝撃力に関する検討、氷板 群が沿岸建築物周辺で津波により引き起こすアイスジャムに 関する検討⁹などがあり、その基本的な特性や挙動について はかなりの程度まで明らかにされてきた。

そのような状況の中、2010年2月にチリ沖地震で発生した 津波、2011年東北地方太平洋沖地震津波は、震源から遠く離 れた北海道沿岸域に到達し、結氷した河川への遡上が発生し た。矢野ら⁶の報告によれば十勝川において巨大氷板の漂流 が発生しているし、2011年の東北地方太平洋沖地震津波では、 河川管理施設周辺において**写真-1**のように多数の漂流氷板痕 跡が発見され、実際に施設等に損傷をもたらしたことが報告 されている⁷。こうした問題は近年にようやく河川管理上の 課題として認識されることとなり、津波伝播の基礎メカニズ ムに関する検討⁸や河川構造物に対する大規模津波の影響に 関する検討⁹などが開始され、徐々にその知見は蓄積されて きている。

冬期の津波来襲を想定した場合に、河川管理施設の操作等 を決定するには、**写真-1**のような氷板漂流物が引き起こす施 設への衝突やジャミング、水位変動等の様々なシナリオを想 定することが求められている¹⁰。しかし、樋門水路のような 局所的な領域に来襲する多数の漂流物群の挙動についてはほ とんど明らかになっていない。そのため結氷時の河川津波来 襲時の施設操作を考える上でどのような想定を備えるべきか について考え方が充分に整理されていないのが現状である。 (a) 鵡川河口・2011/3/14撮影

写真-1 現地調査で確認された氷板漂流物

そこで本研究では、河川管理施設周辺において、氷板を代 表とする漂流物群がどのような挙動を示すかと、それに伴う 水位変動及び波力作用に関する検討を行うこととした。それ にあたり、激しい自由水面変形を伴う津波衝突のような現象 を柔軟に取り扱うことが可能な数値解析手法に着目し、これ を基本的な解析手法として、実スケールを想定した漂流物群 を伴う津波衝突の数値解析を実施した。特に津波の衝突形態 や非結氷期との違いに注目して議論を進めることとした。尚、 本稿は寒地土木研究所月報における河川津波漂流物の数値解 析モデル構築の報告¹¹⁾と、土木学会全国大会において報告し た最近の知見¹³を合わせて報告するものである。

*1 国立研究開発法人 土木研究所 寒地土木研究所 寒地水圏研究グループ
*2 北見工業大学 社会環境工学科

まず、本研究で用いている数値解析手法について述べる。 本研究で採用しているのは、はじめ Koshizuka ら¹³により提 唱され、水工学や海岸工学分野で比較的適用実績の多い MPS (Moving Particle Semi-implicit あるいは Simulation)法である。なお、 MPS 法と類似の手法として Gingold ら¹⁴⁾が提唱した SPH (Smoothed Particle Hydrodynamics)法がある。近年では離散化手 法や計算の進め方に大きな違いは無くなってきており、どち らの手法も、徐々にではあるが実務においても様々な分野で 普及が拡大している。

一般的な MPS 法の解法については越塚による参考書¹⁵が 詳しいのでここでは割愛するが、支配方程式は非圧縮性粘性 流体の流れを記述する次の連続の式及び Navier-Stokes の運動 方程式である。

$$\frac{D\rho}{Dt} = 0, \quad \frac{D\boldsymbol{u}}{Dt} = -\frac{1}{\rho}\nabla p + \nu\nabla^2 \boldsymbol{u} + \boldsymbol{g} \qquad (1)$$

ただし、ρは流体密度、u は速度、p は圧力、v は動粘性係数、 g は重力加速度である。粒子法は計算メッシュを用いずに流 れの解析を行う方法である。河川工学的な諸問題の解析にあ たっては(1)式を水深積分したいわゆる浅水流方程式を用い、 格子法(粒子法との対概念と考えた場合の、メッシュに基づ く流れの解析法)により1次元あるいは2次元の解析を行う ことがほとんど一般的である。しかし、格子法によって例え ば河川を遡上する段波が水面上の構造物と相互干渉する場合 や、漂流物を伴う津波現象などに適用するためには、特段の 工夫や処理を要することから解析には困難が伴う。本研究の 主な対象である氷板群の解析も自由水面変動と漂流物の複雑 挙動が伴うことが想定されるため、そうした解析対象への適 用性及び柔軟性から、粒子法を採用することとした。標準の MPS 法においては、基礎式において微分演算子を含む圧力 項・粘性項がそれぞれ次のように離散化される。

$$\langle \nabla p \rangle_i = \frac{D_s}{n_0} \sum_{j \neq i} \frac{p_j - \hat{p}_i}{r_{ij}^2} \boldsymbol{r}_{ij} w(r_{ij})$$
(2)

$$\langle \nabla^2 \boldsymbol{u} \rangle_i = \frac{2D_s}{n_0 \lambda} \sum_{i \neq i} (\boldsymbol{u}_j - \boldsymbol{u}_i) w(r_{ij})$$
(3)

ただし、 p_i は粒子iの圧力、 \hat{p}_i は相互作用を計算する粒子が持 つ圧力の最小値、 D_s は空間の次元数(=2)、 n_0 は基準粒子数 密度、 r_j は粒子jの粒子iに対する相対位置ベクトル(大きさは $r_j = r$)、w(r)は重み関数、 λ はMPS法のモデルパラメータであ り、括弧 $(\cdot)_i$ はMPS法の粒子間相互作用モデルで離散化する ことを示している。

さて、Koshizukaら¹³による標準型のMPS法は水工学の諸問 題において複雑界面を伴う現象について多数適用されてきて いるが、内部圧力場の数値解に非物理的な振動を伴うとい

図-1 アイスジャム水理実験における狭窄部・氷板模型の位 置関係の模式図

う問題が指摘されてきた。こうした問題に対して、近年 MPS 法の解を安定化させるスキームに関する研究が盛んに行われ るようになり¹⁰⁻¹⁹、そうした圧力攪乱はかなりの程度まで抑 制可能であることが示されてきた。本研究では、そうした安 定化された MPS 法の一つである CMPS-HS-HL 法¹⁰を基本的 な解析手法として採用した。また、氷板群の挙動を模擬する ために, Koshizuka ら¹³による簡易剛体モデルによって、剛体 を計算粒子の集合体として見なすこととした。尚、本モデル の氷板群挙動追跡への適用性は、Gotoh ら²⁰による検討事例 があることを付記しておく。

3. 結果及び考察

3.1 アイスジャムに関する水理実験²¹⁾とその数値シミュレー ション

吉川ら²⁰は春先の解氷期などに河道狭窄部で発生しうるア イスジャムに関する水理実験を実施した。アクリル製で延長 9m、幅0.2m、勾配1/500の水路に、図-1のように下流端から3 mの位置から0.2m区間に幅0.1mの狭窄部を設置し、始め狭 窄部上流に大小2種類の氷板群を設置した。氷は比重0.9、寸 法は大きいものが長さ20 cm、幅10 cm、厚さ3 cm、小さいも のが長さ10 cm、幅10 cm、厚さ1.5 cmである。狭窄部上流端

(図-1 (a)のA-A'断面)から上流1 m地点、下流1 m地点の2箇 所で水位計測を行った。実験開始後、上流流量を徐々に増加 させると氷が流下しアイスジャムが発生することとなる。本 稿では、粒子法モデルによるこの実験の数値シミュレーショ ンを実施した。解析にあたり可能な限り水理量は実験と同一 とし、計算粒子径do=0.005 m とした。図-1 (a) A-A'断面の上流 側1.5 m地点から下流側1.5 m地点までの計3.0 mを解析対象と し、領域左端をx=0m地点とした。鉛直2次元モデルで狭窄部 の再現は困難であるため、図-1 (a)の赤破線の断面について解 析を行うこととし、氷板下端が狭窄部に差し掛かった際に流 下方向速度を0とし、狭窄部より下流に流下しないようにし た。

図-2に示したのは、アイスジャム水理実験の様子と解析結 果との比較である。図-2 (a)は通水開始10秒後の様子で、氷板 は整然と並んでいるが、図-2 (b)の時刻になると水理実験では 氷板群の上流側で攪乱が生じ、上流側の氷板の一部が滞留氷 板の下部に潜り込んでいる様子が確認された。解析結果にお いても、氷板群全体の配置は異なるものの、上流側氷板の流 れによる攪乱が再現された。図-2 (c)のt = 30 sにおいては、水 理実験では氷板群の配置は大きく乱れており流下が始まって いるが、下段の解析結果でも氷板群は流下しながら狭窄部箇 所で滞留が始まっている。図-2 (d) t = 45 sでは狭窄部付近で氷 板同士が折り重なりジャミングが生じる結果となった。解析 結果においても狭窄部直上流で閉塞が発生した。すなわち、 実験においてもシミュレーション結果においても狭窄部上流 で水位上昇が生じており、これは狭窄部によるアイスジャム に起因するものと考えられた。

図-3に示したのは、水理実験による2箇所の水位変動の計 測結果と解析上得られた水位変動量との比較を示したもので

ある。図中のxは解析領域左端からの距離[m]に合わせて示し ている。上流側図-3 (a)について、実験値は上昇と下降を繰り 返して全体として上昇する傾向であるが解析結果では上下変 動はさほど明瞭でなかった。下流側図-3 (b)について、傾向は 合致せずとも緩やかな変動傾向は概ね類似している。両地点 とも解析を行った時間帯での上昇傾向及び上昇量は概ね類似 しており、解析結果はある程度の妥当性を有していると考え られた。各氷板の挙動について、シミュレーションは完全に 再現できているわけではないが、再現性の向上のためには河 床部との摩擦の考慮、氷板同士の摩擦を適切にモデル化する ことが必須であるものと考えられる。

3.2 樋門ゲート前面部での氷板群挙動の解析

前項の検討において、安定化MPS 法を用いた場合には、浮体群の挙動や水位変動傾向についてある程度妥当な結果が確認された。本項では、実際の治水施設の形状に基づく解析領域を作成し、氷板群を伴う河川津波の構造物周辺の挙動に関する解析を実施した。

本稿の検討で想定したのは、現地の樋門へ作用する氷板群 を伴う津波の波力である。既存の樋門を参考にし、河床部、 ゲート部、樋門操作台部の形状について実スケールでの再現 を数値モデル上で行った。樋門形状に模擬した解析領域を図 -4に示した。右側が河川管理施設を模した境界形状であり、 施設操作台とゲート形状を再現した。左側に水深 H_0 の領域を 設定してダムブレークにより造波し、波と漂流物群をゲート 全閉状態の施設に衝突させた。ダム側の初期水深 H_0 =2,3 m、 吐口水路初期水深 h_0 =0.3,1 m, 氷板厚 h_i =0.1,0.3 m, 水平方向の 氷板延長 L_i =1,3,5 mと変化させた数値実験を行い、氷板のサ イズにより施設に接近する津波の伝播形態と氷板群の漂流過 程の変化について検討を行った。氷板比重は前項同様0.9とし た。

図-5に示したのは、開水時と氷板が存在する場合における

図-5 (a)開水時, (b) L_i=1m, (c) L_i=3mの場合における, 樋門ゲート前の津波衝突及び氷板漂流状況

流況の比較である. *t* はダムブレークの拘束を解いて以後の 経過時間である. 図-5 (a)の開水時を見ると, ダムブレーク開 始後、「マッシュルーム型」のジェットとなった段波が次第 にゲートへ向かって接近し, *t*=3 s以降ゲートへ衝突し, *t*=4 sではゲート上部で飛沫を上げながら衝突を起こしている.

図-5 (b)には氷板サイズ1 mを伴う場合を示した. 橙色の粒 子が氷板を構成する粒子を示しており,ひとまとまりの剛体 を構成する粒子群については,黒実線で輪郭を示している. *t*=1.1 sの段階で,氷板が段波に巻き込まれながら遡上を開始 している.開水時とは段波形状も異なる.この時既に,下流 側から次々と押された氷板が押し出され,ゲート直近の氷板 はゲートに接触している.また,氷板は激しく回転を伴い ながら津波に取り込まれており,群体として遡上している様 子が確認された.*t*=3.6 s~4.2 sにかけてゲートへの衝突が発 生し,その後戻り流れとなった.

次に図-5(c)の3mの場合であるが、やはりt=1.1sの段階で、 下流から押された氷板とゲートとの接触が発生しており、同時に段波が氷板を巻き込みながら遡上している.この時、氷板長が1mのケースに比較して、顕著な回転は伴わず、水平に折り重なりながら、輸送されているのが特徴である.

図-5 (H_0 =3 m, h_0 =1 m, h_i =0.3 m)の条件において、氷板の 有無による伝播状況の違いを検討するために図-6に示したの は水平距離x = 14, 18, 22 m地点で算出された時系列の水位変動 である。図-6 (a)より氷板の無い場合は段波状の波形が確認で きるが、 L_i =1,3 mの場合には約0.2 m高い波高となって接近し ている。これは前述の指摘の通り氷板の波への追従性が良い ために図-5 (b)のような津波フロント内部での氷板の回転や重 畳が発生し水位をやや上昇させたものと考えられた。図-6 (b) は18 m地点のものである。氷板サイズ3 mのケースにおいて 振動が見られるのは図-5のように水面から飛び出した氷板で 水位を検出したためと考えられた。それを除けば概略的な傾

向として開水時に比較するとフロントの波面勾配は小さくなっているが、本体部分($t = 2 \sim 3$ s)はやや波高が上がっている。図-6 (c)は22 m地点の水位変動であるが、若干の波形変化を生じているものの概略的な傾向について見れば大きな変化は見られない。しかし、 $L_i = 1, 3$ mで二山型の波形となっているのは、図-5 (b) t = 4.2 s, 図-5 (c) t = 4.3 sのように水面近傍の氷板の影響によるものと考えられた。このように浮遊する氷板群は遡上する津波波形・波高を変化させるだけでなく、津波侵入を受けると同時にフロント付近に集積し、特に強い相互作用を生じることがわかった。

次に、構造物に対する外力をモデル内で測定するため、樋 門ゲート部分を構成する固定境界壁粒子を、加速度は発生す るが変位はしない粒子と定め、時系列的な加速度変化にゲー トの質量を仮想的に掛けることで、ゲートに作用する波力を 間接的に推定するという処理を行った。ゲートの質量は、正 面から見て幅2m、高さ2m、厚さ0.3mの鋼製ゲートを想定し、 約9.3 tとした. 図-7に示したのは、ゲートに対する時系列作 用波力の変化である.開水時は、段波が到達した約3秒後に 波力最大値を示している.一方、氷板が存在する場合は、上 で指摘したように、下流側から押し出された氷板が接触した 時に、ピークの波力が作用していることがわかる.また、開 水時とは異なり、複数のピークを持つ波力時系列となってい るのが特徴的である.また、概ね5秒後以降は類似した波力 時系列変化であった.

4. まとめと今後の課題

本研究では、2011年東北地方太平洋沖地震津波発生時の北 海道太平洋岸地域で痕跡として残された河道内氷板を元に、 それらが治水施設に対してどのように接近するかについて数 値解析的な検討を行った。モデル精度については事前に水理 実験のシミュレーションを通じて確認をした上で、より実際 的な検討として、現地スケールを想定した樋門形状を再現し、 氷板の諸元を変更した分析を行った。

その結果、本稿で与えた津波条件と漂流氷板が厚い場合に は、サイズ(Li)の小さい氷板の時は津波に追従して施設に 接近し、サイズが大きい時は追従性が低い予測結果が得られ た。この類推から、サイズの小さい氷板が散乱しているよう な状況、すなわち冬期の中でも結氷開始時期や解氷期におい ては、津波に追従して漂流氷板の接近が発生しやすくなると 考えられる。また、氷板が密に滞留している場合などは、氷 板群の端部で津波衝突が発生すると、直ちに構造物と氷盤の 接触が起こり、津波衝突とは異なるタイミングで構造物への 波力作用が発生する可能性が予見された。これは積雪寒冷地 の津波防御を想定した施設設計にあたり、留意すべき事項の 一つと言える。その一方で、既往の現地調査結果²⁰から氷は 実際にはサイズに分布を持つことが想定され、今後、サイズ 分布をも考慮した水理実験や解析を実施し、治水施設等の設 計や操作上で考慮すべき事項の整理を行うことが望ましいと 考えられる。

参考文献

- 北海道大学十勝沖地震調査委員会,十勝沖地震調査報告 1952年3月4日,1954.
- 2) 佐伯浩,高橋良正,三谷朋行,津波による海氷盤の陸上への遡 上機構に関する実験的研究,海岸工学論文集,第41巻, pp.796-800, 1994.
- 高橋良平,片山晃,花田真州,佐伯浩,山下俊彦,氷盤群の津波 による陸上への遡上機構に関する実験的研究,海岸工学論 文集,第41巻,pp.1236-1240,1994.
- 4) 木岡信治, 竹内貴弘, 蟹江俊仁, 海氷の杭構造物への衝突破壊 特性に関する実験的及び数値的検討, 土木学会論文集A2(応

用力学), Vol.69(2), pp.I_333-I_340, 2013.

- 5) 木岡信治,森昌也,遠藤強,竹内貴弘,渡部靖憲,海氷群を伴った市街地への津波遡上特性に関する検討,土木学会論文集 B2(海岸工学), Vol.70, No.2, pp. I_821-I_825, 2014.
- 6) 矢野雅昭,吉川泰弘,石谷隆始,高橋一浩,2010年2月28日に発生したチリ沖地震津波の結氷河川における河川遡上に関する現地観測,寒地土木研究所月報,Vol.693,pp.14-16,2011
- 7) 阿部孝章,吉川泰弘,矢野雅昭,永多朋紀,稲垣達弘,桃枝英幸, 村上泰啓,平井康幸,2011年東北地方太平洋沖地震により発 生した津波の結氷河川における遡上状況及び氷板痕跡調査, 寒地土木研究所月報,Vol.705,pp.20-30,2012.
- 吉川泰弘,渡邊康玄,阿部孝章,大久保敦,河川結氷時における河川津波の圧力伝搬速度と圧力減衰特性,河川技術論文集,Vol.19,pp.375-380,2013.
- 佐藤好茂,阿部孝章,吉川泰弘,伊藤丹,氷板混合津波が橋桁 に及ぼす波力特性に関する実験的研究,土木学会論文集 B2(海岸工学), Vol.70, No.2, pp.I_851-I_855, 2014.
- 10) 国土交通省北海道開発局,雪氷期の津波沿岸防災対策の検 討報告書,37 p.,2013.
- 11) 阿部孝章,吉川泰弘,佐藤好茂,船木淳悟,河川管理施設周辺 における津波漂流物の数値シミュレーション,寒地土木研 究所月報,No.741,pp.24-32,2015.
- 12) 阿部孝章,吉川泰弘,矢部浩規,漂流物群を伴う遡上津波が 河川構造物に及ぼす外力に関する数値解析的検討,第71回 年次学術講演会講演概要集,II-191,2016.
- Koshizuka, S. and Oka, Y., Moving-particle semi- implicit method for fragmentation of incompressible fluid, Nuclear Science and Engineering, Vol.123, No.3, pp.421-434, 1996.
- 14) Gingold, R. A. and Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, vol.181, pp.375-389, 1977.
- 15) 越塚誠一, 粒子法, 計算力学レクチャーシリーズ5, 丸善, 144 p., 2005.
- 16) Khayyer, A. and Gotoh, H., Enhancement of stability and accuracy of the moving particle semi-implicit method, Journal of Computational Physics, Vol.230, No.8, pp. 3093-3118, 2011.
- 17) Kondo, M. and Koshizuka, S., Improvement of stability in moving particle semi-implicit method, International Journal of Numerical Methods in Fluids, Vol.81 No.12, pp.1514-1528, 2011.
- 18) 玉井佑,柴田和也,越塚誠一, Taylor展開を用いた高次精度 MPS法の開発, Transactions of JSCES, Paper No.20130003, 2013.
- 19) 入部綱清, 仲座栄三, MPS法における勾配計算の高精度化と その応用, 土木学会論文集B2(海岸工学), Vol.66, No.1, pp.46-50, 2010.
- Gotoh, H. and Sakai, T., Key issues in the particle method for computation of wave breaking, Coastal Engineering, Vol.53, pp.171-

179, 2006.

- 吉川泰弘,阿部孝章,平井康幸,河川津波に伴い発生した北海道鵡川のアイスジャム再現計算,土木学会論文集B2(海岸工学),Vol.68,No.2,pp.I_416-I_420,2012.
- 22) 阿部孝章,吉川泰弘,佐藤好茂,伊藤丹,寒冷地河口域の津波 発生時における氷板サイズ分布の推定に関する研究,土木 学会論文集B2(海岸工学), Vol.70, No.2, pp.I_1471-I_1475, 2014.