第7章 橋梁付属物
第7章 橋梁付属物

7.1 支承
7.1.1 支承の基本条件
7.1.2 橋脚の設計
7.1.3 段差防止構造

7.2 伸縮装置
7.2.1 一般
7.2.2 必要伸縮量の算定
7.2.3 鋼製フィンガージョイント
7.2.4 プラウ系除雪車対策

7.3 排水装置
7.3.1 排水装置の設計
7.3.2 高規格道路排水桝の使用区分

7.4 橋梁用防護柵
7.4.1 橋梁用防護柵の分類
7.4.2 橋梁用車両防護柵の種別と適用
7.4.3 橋梁用ビーム型防護柵の設計
7.4.4 コンクリート製壁型防護柵
7.4.5 地脚の形状
7.4.6 橋梁用防護柵の柱の定着
7.4.7 橋梁用防護柵の形状及び材料の選定
7.4.8 橋梁用防護柵の防錆
7.4.9 橋梁用防護柵の標準設計図
7.4.10 床版に与える影響
7.4.11 高規格道路における中央分離帯の形状
7.4.12 転落防止施設
7.4.13 コンクリート製壁式防護柵の止水対策

7.5 落橋防止システム
7.5.1 落橋防止構造システム

7.6 橋梁維持・管理用施設
7.6.1 一般
7.6.2 橋梁用検査路
7.6.3 維持用装置

7.7 踏掛版等
7.7.1 踏掛版の設置箇所および版の長さ
7.7.2 踏掛版の設置位置および設置幅
7.7.3 踏掛版の設計
7.7.4 斜角を有する踏掛版
7.7.5 橋台背面処理
7.7.6 橋台ウイング（擁壁）端部の排水処理

7.8 落下物防止柵
7.8.1 種類
7.8.2 設置箇所
7.8.3 設置範囲
7.8.4 設置荷重条件

7.9 はく落防止対策
7.9.1 一般
7.9.2 適用範囲
7.9.3 はく落防止対策工の選定
第7章 橋梁付属物

7.1 支承

7.1.1 支承の基本条件

支承の設計は道示(H29)Ⅰ編 10.1 P163 および道示(H29)Ⅴ編 13.1 P259 により行うものとする。

7.1.2 橋座の設計

(1) 支承の据付高さは、支承底面の突起が橋座コンクリートの中に入るように設計し、橋座部は、D16以上の鉄筋で補強すること。支承固定用の充填材には無収縮モルタルを用いることとする。また、上揚力を伴う場合は、アンカーボルト、アンカープレートによる対処を検討するのがよい。

(2) 帯状ゴム支承またはパッド型ゴム支承を有するスラブ橋の支承縁端距離は、道示(H29)Ⅳ編 7.6 P115 より所要量を確保するものとする。

【解説】

1) 橋座部に段差がある場合の内側支承縁端距離は、図7.1.1による。

①Δh > S'+bの場合 S'≧Sとする。

②Δh ≦ S'+bの場合 S'≧20㎝とする。

(a) 鋼製支承、鋼製下沓のあるゴム支承

・Δhと支承(アンカー)からのせん断面に関係なくB≧2・Sとする。ただし、ゴム支承縁端からもS″≧20cmを確認するものとする。

(b) ゴム支承(アンカーで水平力を負担する支承)

図7.1.1 内側支承縁端距離

3-7-1 【H31.04改訂】
2）支承に働く鉛直力には支承下面のコンクリートが抵抗し、上揚力、負の反力にはアンカーボルトが抵抗する。また、水平力には下端底面の突起とアンカーボルトが抵抗する。

これら支承部の設計は道路橋支承便覧（平成30年）4.5.7「上部構造の支承取付部」4.5.8「下部構造の支承取付部」によるものとする。支承の据付をより確実に行なうため無収縮モルタルを使用することを原則とした。据付高さは、モルタルの流し込みの確実性と経済性から図7.1.2に示す箱抜き標準図によるものとする。

また、突起による支圧抵抗を期待するためには、突起が下部工躯体に埋め込まれるのが望ましいので少なくとも突起の一部が橋座コンクリートに入るように設計するものとした。下部工躯体の開孔径は、円筒型枠のサイズに合わせ統一した。

<table>
<thead>
<tr>
<th>開孔径（D㎜）</th>
<th>アンカーボルト径（φ㎜）</th>
<th>開孔径（D㎜）</th>
<th>アンカーボルト径（φ㎜）</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>25以下</td>
<td>300</td>
<td>92～100</td>
</tr>
<tr>
<td>150</td>
<td>26～50</td>
<td>325</td>
<td>101～108</td>
</tr>
<tr>
<td>175</td>
<td>51～58</td>
<td>350</td>
<td>109～116</td>
</tr>
<tr>
<td>200</td>
<td>59～66</td>
<td>375</td>
<td>117～125</td>
</tr>
<tr>
<td>225</td>
<td>67～75</td>
<td>400</td>
<td>126～133</td>
</tr>
<tr>
<td>250</td>
<td>76～83</td>
<td>450</td>
<td>134～150</td>
</tr>
<tr>
<td>275</td>
<td>84～91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a)鋼製支承および積層ゴム支承の場合

(b)パッド型ゴム支承の場合

図7.1.3 支承据付箱抜き標準図
図7.1.4 塩座モルタル補強鉄筋

橋座部は、上部構造からの荷重を直接受けるので、計算上補強鉄筋の必要がない場合でも、鉄筋で補強しておくのがよい。

7.1.3 段差防止構造

段差防止構造の設計は、道示(H29)Ⅴ編 2.7.1 P38 により行うものとする。
7.2 伸縮装置

7.2.1 一般

伸縮装置の設計は 道示(H29)Ⅰ編 10.3 P179 および 道示(H29)Ⅴ編 13.2 P268 の規定により行うものとする。

【解説】

(1) 積雪地では、冬期間のチェーン装着車などの通過によるわだち掘れ、段差の形成および衝撃の増大による耐久性の低下が著しいので、ゴム部材が直接路面に当たるものおよび装置をボルト締めにする構造のものは、特に理由がなければ使用しない方がよい。

(2) 特に縦断勾配の大きい橋、斜角のきつい斜橋および曲線橋などでは、伸縮装置に垂直方向のくちがいが生じたり、大きなせん断力が働いたりするので、型式の選定にあたっては注意を要する。

図7.2.1 縦断勾配による変位図 図7.2.2 斜橋の変位図 図7.2.3 曲線橋の変位

図示

(3) 積雪寒冷地の伸縮装置の要求性能等は、「北海道における鋼道路橋の設計および施工指針第1編設計・施工編6.3伸縮装置」を参考にするとよい。

(4) 防食仕様

伸縮装置は雨水や凍結防止剤の影響を直接受ける部材であることから、耐水性に優れた防食仕様が必要である。 鋼桁本体と合わせて製作する伸縮装置の防食仕様は、「鋼道路橋防食便覧」に示されている塗装系のうち、伸縮装置の塗装に求められる性能（耐水性、防食効果の耐久性）に最も適応する「D-5塗装系」を基本とする。また、床版等のコンクリート接触面にはさび止めとして、「無機ジンクリッジペイント」を塗布するのがよい。

鋼製フィンガージョイントの例を次に示す。 その他の形式の伸縮装置については、本項の趣旨を踏まえて、「D-5塗装系」に相当する防食性能を確保する必要がある。
7.2.2 必要伸縮量の算定

（1） 常時

伸縮量は、道示（H29）に準拠し、桁の温度変化、コンクリートのクリープ及び乾燥収縮、活荷重によって生じるたわみによる上部構造の移動量、並びに施工時の余裕量を考慮して設定することを基本とする。

【解説】

（1） 温度変化については、表7.2.1によるものとする。

表7.2.1 温度変化（℃）

<table>
<thead>
<tr>
<th>地域</th>
<th>鋼橋</th>
<th>コンクリート橋</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25℃以下とならない</td>
<td>-20 ～ +40</td>
<td>-15 ～ +35</td>
</tr>
<tr>
<td>-25℃ ～ -35℃</td>
<td>-30 ～ +40</td>
<td>-25 ～ +35</td>
</tr>
<tr>
<td>-35℃ ～ -45℃</td>
<td>-40 ～ +40</td>
<td>-35 ～ +35</td>
</tr>
</tbody>
</table>

注）温度変化による不静定力は 道示（H29）Ⅰ編 8.10 P126 による温度変化を用いるものとする。
7.2.3 鋼製フィンガージョイント

鋼製フィンガージョイントは、図7.2.5を標準とする。

【解説】
(1) フィンガープレート
曲げモーメントは、端固定、他端単純支持とする梁として計算する。

図7.2.5 鋼製フィンガージョイント標準図

1) 鋼製フィンガージョイントは支持型式を標準とする。
2) 鋼製フィンガージョイントは非排水式とする。
但し、縦断勾配の非常にきつい場合、斜角のきつい場合は片持型式についても検討する。
PC橋に使用する場合、T荷重をフィンガージョイント本体で受け持たせると、張出し床版長が
長いと不経済となる場合があるため、桁端部の張出し床版を打上げることを検討する。

図7.2.6に参考図を示す。

図7.2.6 PC橋桁端部打下げ

注) ±α:温度変化または地震による設計伸縮量
β:ウェブ遊間
7.2.4 プラウ系除雪対策

除雪計画のある路線の橋には、伸縮装置のスノープラウなどによる引っかけ破損を防止するため、伸縮装置にスノープラウ誘導板を設置するものとする。

【解説】
伸縮装置の両側に配置する誘導板間隔の目安としては225mmピッチ程度で配置するのが良いが、ジョイント構造や形式により配置が困難な場合もある。よって、スノープラウ誘導板の長さ（最小PL=260mm）とテーパー部寸法（最小TL=150mm）と配置ピッチの照査を行い、適切な構造配置とするものとする。
走行車線が上下に分離されている場合など除雪車の走行方向が定まっている場合では、走行方向の片面側（手前側）のみにスノープラウ誘導板を配置する対応としてもよい。
スノープラウ誘導板の板厚は22mmを標準とし、ジョイント設置高さは、舗装計画高さと同じ高さとする。

図7.2.7 スノープラウ誘導板（参考図）

注）1 スノープラウ誘導板がパラペットに収まらない場合は、パラペット頭部を厚くする。
2 スノープラウ誘導板の寸法及び開口寸法は、パラペット及び床版の鉄筋との取り合いに注意して決めるものとする。
3 スノープラウ誘導板と基部コンクリートは一体構造とし、伸縮装置本体の損傷を防止するものとする。
4 補強鉄筋までのかぶりは、30mm以上確保するものとする。また、通し筋設置箇所のスノープラウ開口部は閉塞形状とする。
5 新設する伸縮装置スノープラウ誘導板部の路盤は、アスファルトで処理するのを原則とする。但し、補修において、既設伸縮装置をそのまま使用する場合はこの限りでない。
6 排水性舗装の場合、スノープラウ誘導板は、防錆処理（タールエポキシ、亜鉛溶射など）を適確に行うこと。
7 排水性舗装の場合、床版端部に設けられるスノープラウ誘導板部は、端部防水処理を十分に行うこと。

3-7-7 [H25.04改訂]
(2) スノープラウ誘導板の設置間隔の決定方法
図7.2.8および7.2.9(a)(b)を参考に決定するとよい。

図7.2.8 直橋の場合

(a) 左斜角の場合

\[W \leq \frac{150}{\tan 30^\circ} \] （W = 225mmを採用する。）また、誘導板長さPL≧2・W・\tan 30^\circ となる。

(b) 右斜角の場合

\[W \leq \frac{150}{\tan 30^\circ + \tan (90^\circ - \theta)} \] 但し、W<225mmとなる場合はW≦225mm（標準）とし \(\ell \) を算出する。

\[TL \geq W \times \{\tan 30^\circ + \tan (90^\circ - \theta)\} \]

図7.2.9 斜橋の場合

\[W \leq \frac{150}{\tan 30^\circ - \tan (90^\circ - \theta)} \] 但し、最大で300mm程度とする。
7.3 排 水 装 置

7.3.1 排水装置の設計

橋面には排水をすみやかに行なうために必要な横断勾配、また、高架橋には、排水を考慮し縦断勾配をつ
け路肩には必要な間隔に十分な大きさの排水桝を設けるものとする。排水桝の間隔は20m以下とするのがよ
い。

排水管の内径は最小部で15㎝以上とし、ごみ・泥など除去しやすい構造とするものとする。箱桁、トラス
部材などの閉断面で、構造上水のたまりやすい場所には水抜き孔を設けるのがよい。

排水管の設置は、橋梁本体の景観デザインの支障とならないよう配慮すること。

高規格道路の排水桝には長尺桝を使用するものとする。

【解 説】

(1) 排水桝は第6集標準図集「排水装置(排水桝)」によるものを標準とする。

(2) 排水桝の設置間隔は20m以下を基本とするが、設置条件により排水桝間隔を拡げる必要がある場
合には計算式により設置間隔を決定するものとする。（計算は道路土工排水工指針に準拠する）

計算式による必要間隔長が橋脚間隔より長い場合には、各橋脚位置で排水するものとする。また、
計算式による必要間隔が橋脚間隔より短い場合でも、できる限り桁殿板に添わした導水管が短くな
る様に排水桝位置の計画を行うものとする。

(3) 排水装置は、清掃が可能な構造とする。

(4) 材質は凍結による破損の恐れないものとする。

(5) 上部構造の振動により接続部、取付装置が外れない構造とする。

(6) 排水管の末端は、一般の河川上の橋梁では桁フランジより20㎝下で切り放し、たれ流してよい。
ただし、支承の付近では背座面より20㎝程度下げておくこと。

(7) 排水管の屈曲はなるべくさけること。

(8) 排水桝の設置位置については、橋梁下の道路や鉄道から外れた位置に設置することを検討する。

(9) 横断勾配および片勾配の関係で橋面が凹になる場合には、必ずその凹部の最低部に排水桝を設け
ること。また、その付近での排水桝の間隔は3～5m程度とするのが望ましい。

(10) 伸縮装置の近くには排水桝を設けて伸縮装置への流入量を極力減じるなど配慮することが望ま
しい。

(11) 排水管を地盤面まで下げる場合は、橋脚位置で行なうとよい。

(12) 水平に近い排水管は、極力避けすること。構造上、水平に近い排水管を設ける場合は、ヒーティ
ングを施すこと。

(13) 受け桝の使用は極力避け、フレキシブルダクトを基本とする。

3-7-9 【H20.04改訂】
（14）排水桝を設けるため床版等の鉄筋を切断するときは、図7.3.1に示すように切断した鉄筋に相当する補強鉄筋を排水桝の周囲に配置しなければならない。

（15）高架橋などで橋軸方向に配置する排水管は、（図7.3.2〜7.3.4）を参考に設計するとよい。

（16） 排水管及び排水管樋は、耐久性、維持管理を考慮し、亜鉛メッキを標準とする。ただし、排水管においては景観への配慮が必要な箇所は、亜鉛メッキの上に塗装を行なってよい。また、塩害の影響を受ける箇所に設置するものは、別途考慮を行うこと。

（17）流末処理を適切に検討すること。特に下部構造周辺の土砂洗掘に留意すること。

![図7.3.1 排水桝補強鉄筋]

![図7.3.2 排水桝装置の設置例(a)]

![図7.3.3 排水桝装置の設置例(b)]
橋脚

道路機能から決まるF.L

排水から決まるF.L

橋脚
7.3.2 高規格道路排水桝の使用区分

排水桝は、橋梁規模、設置位置等のよりA、Bの2タイプに区分して適用するものとする。

【解説】

(1) 排水桝の使用区分
排水性舗装を用いる場合の排水桝の使用区分を以下に示す。
排水桝タイプ（A、B）は、“第6集 標準設計図集 第3章 高規格道路 9．橋梁”を参照のこと。

※1 注意事項：中央分離帯の※1については、Bタイプの排水桝を設置することを基本とし、省略する場合は、路面排水について十分に検討すること。

図7.3.5 排水桝設置例
(2) 排水桝の設置位置

長尺排水桝の設置位置は、地覆の内側に入れてはならない。

長尺排水桝の設置高さは、その位置における舗装表面より10mm下げるものとし、設置勾配は路面勾配に合わせるものとする。

図7.3.6 長尺排水桝の設置方法（Aタイプの場合の例）
7.4 橋梁用防護柵

7.4.1 橋梁用防護柵の分類

橋梁用防護柵の設置にあたっては、機能、経済性、施工条件、美観、維持管理等を十分勘案したうえで、設置目的及び設置箇所に応じて種類等を選定しなければならない。

(1) 車両用防護柵
車両用防護柵、車両の橋梁外への逸脱を防止するために設置される防護柵である。
橋梁における車両用防護柵はたわみ性防護柵（橋梁用ビーク型防護柵・ガードレール）と剛性防護柵に分類される。

(2) 高欄（歩行者自転車用柵）
横梁における歩行者自転車用柵は、歩行者及び自転車の橋梁外への転落を防止するため、歩道地覆に設置されるSP種の防護柵である。

(3) 高欄兼用車両用防護柵
高欄及び橋梁用ビーク型防護柵の機能を兼ね備えた防護柵であり、(2)において、歩道幅が狭い、または除雪等の理由により歩道境界部に車両用防護柵の設置が困難な場合は、歩道地覆部に設置できる。また、形状についても双方の機能を有したものとする。

【解説】
橋梁用防護柵の分類は、「防護柵の設置基準・同解説」（平成20年1月、日本道路協会）によった。
橋梁用防護柵の基本的な分類を示した。適用区分は、7.4.2を参照すること。
山間部等の小規模橋梁で景観等に問題がない場合や前後の状況によりガードレールについて検討し、適用の可否を検討する。
「防護柵の設置基準・同解説」で示されている防護柵の代表的な型式を下のフローチャートに示す。
本要領で規定する「橋梁用防護柵」の範囲は、下記の着色部である。

図7.4.1 代表的な防護柵の分類
7.4.2 橋梁用車両防護柵の種別と適用

橋梁用防護柵種別適用区分（参考）

(1) 一般国道の場合
防護柵の適用区分は、「一般区間」、「重大な被害が発生するおそれのある区間」、「新幹線などとの交差または近接する区間」に区分し、逸脱防止を図ることを基本とする。
なお、※印箇所については代表的事例であるため、フロー選定においては「防護柵の設置基準・同解説」により諸条件を十分検討し選定すること。

図7.4.2(a) 橋梁用防護柵の適用フロー

※1 重大な被害のおそれのある区間

crossroad, crossroad: concrete type protective fence
その他：橋梁用ビーム型防護柵またはガードレール

(注2：設計速度が40km/h以下の場合は一般区間を適用しても良い)

※ 1 重大な被害のおそれのある区間

(1) 重大な乗員被害

乗員被害が考えられる区間で、逸脱車両の乗員が致命的な傷害を被るおそれのある区間。
1) 路外の危険度が極めて高い区間等であり、路外の段差・交通・沿道状況を考慮し判断する。具体的には河川橋の場合、路面から河床までの高さが4m以上の範囲がこれに相当する。
2) 北海道においては、路面の凍結を考慮し判断する。

(2) 重大な二次被害

二次被害が考えられる区間で、走行中の車両等と衝突することにより多大なる二次被害を発生させることが想定される区間。
1) 鉄道・他道路に進入するおそれのある区間。
2) 鉄道、高速自動車国道、自動車専用道路などと交差、近接区間。
3) 走行速度が特に高く、かつ交通量の多い分離帯設置区間。
4) その他重大な二次被害の発生するおそれのある区間。

その他
新幹線、ガスタンク、危険物貯蔵施設等と近接する区間、走行速度や線形条件などにより衝撃度が高くなりやすい区間。
図7.4.2(b) 橋梁用防護柵の適用フロー

※2 歩車道境界部に設置する場合(Case2)

(1) 重大な被害のおそれがあるか？※1

① 歩道端および歩車道境界

重大な被害のおそれがあるか？※1

無

有

(注2: 設計速度が40km/h以下の場合は一般区間を適用しても良い)

重大な被害が発生するおそれのある区間
Case1: 歩道端のみ設置
跨道部、跨線部等：コンクリート製壁型防護柵
その他：高欄兼用橋梁用ビーム型防護柵
Case2: 歩車道境界部・歩道端設置※2
歩車道境界部に車両用防護柵
歩道端に縦桟型高欄SP種

(2) 歩道端への設置が認められる区間
1) の条件の場合は歩道境界に設置することを原則となるが、下記条件の場合はCase1を採用することができる。
・跨線橋、跨道橋でコンクリート製壁型防護柵を設置する区間。ただし、上記2)に該当する場合は別途考慮すること。
・歩道幅員が狭く歩車道境界部に設置が困難な区間。
・除雪等が著しく困難となる場合。ただし、上記2)に該当する場合は別途考慮すること。
図7.4.2（c）橋梁用防護柵の適用フロー

※3 車両の対向車線逸脱を防止する必要がある場合

(1) 高速自動車国道および自動車専用道路

(2) 走行速度が高い区間で縦断勾配または線形条件が厳しい区間で特に必要と認められる区間・視認性の良い区間や沿道のアクセスが少ない区間では走行速度が高く、対向車線に逸脱した場合に事故被害が大きくなりやすいが、分離帯自体が対向車線への逸脱防止を図ることから、縦断勾配または線形条件が厳しい区間で特に必要とみとめられる場合に防護柵を設置する。
(2) 高規格道路の場合

図7.4.3 防護柵設置の基本的考え方 (参考)

(a) 上り線、下り線が大きくはなれている場合
もしくは鉄道・道路と交差している場合

(b) 上り線、下り線が若干離れている場合

(c) 上り線、下り線が一体構梁となる場合

(d) 上り線、下り線が構造上分離している場合

図7.4.3 防護柵設置の基本的考え方 (参考)
7.4.3 橋梁用ビーム型防護柵の設計

橋梁用ビーム型防護柵の高さは路面から主要横梁上端まで110cmを標準とする。

【解説】
ビーム型の橋梁用車両防護柵の主要横梁上端高さは90cm〜100cmとなっており、「防護柵設置基準・同解説」には防護柵と車両の関係が示されている。
※1 北海道では冬期間に路面に圧雪が残る可能性があることから横梁中心までの高さは高い方が望ましい。また、上端までの高さを110cmとすると、高欄兼用とできることから、本要領では条文のように定めた。

7.4.4 コンクリート製壁型防護柵

剛性防護柵の種別を以下に示す。
一般国道(V=60km/h以下) ： SC種(直壁型)
高規格道路(V=80km/h以上) ： SB種(フロリダ型)

【解説】
コンクリート製壁型防護柵は、「防護柵の設置基準・同解説」において、フロリダ型、単スロープ型、直壁型の3タイプが示されている。高規格道路では乗員の安全性、車両誘導性により優れたフロリダ型を標準とした。一般国道では従来からの形状を踏襲して直壁型を標準とした。
7.4.5 地覆の形状

1. 歩道部地覆
 歩道部の地覆の幅は40cm、高さは、歩道等の路面より10cmを標準とする。

2. 車道部地覆
 車道部の地覆は幅60cm、高さ25cmを標準とする。また、6cmのテーパーをつけることとする。

3. 歩道部境界
 歩車道境界に橋梁用ビーム型防護柵を設置する場合の定着部は幅50cm、高さ20cmを標準とする。また、6cmのテーパーをつけることとする。

【解 説】

橋梁用防護柵を定着する地覆等の形状をここに示した。「鋼道路橋設計便覧」（昭和55年 日本道路協会）と矛盾した内容となっているが、本要領に示した値を使用するものとする。またテーパーについては、前後の縁石と通りが合うようこれを定めた。
7.4.6 橋梁用防護柵の支柱の定着

(1) 定着位置
 ① 高欄(歩道地覆)
 支柱を地覆(幅40cm)の中心に設置することを標準とする。
 ② 橋梁用ビーム型防護柵、高欄兼用車両用防護柵(車道地覆)
 上横梁前面を地覆の車道側前面より25cm後方に設置する。

(2) 定着方法
 支柱の定着方法は下記のいずれかとする。
 ① 埋込み方式
 ② ベースプレート方式

(3) 埋込み長
 ① 埋込み方式の場合
 1) 高欄 20cm以上
 2) 橋梁用ビーム型防護柵、高欄兼用車両用防護柵 25cm以上
 ② ベースプレート方式の場合
 アンカーボルトの埋込み長は、計算にて決定する。ただし、標準図と設計条件が同一の場合
 はこの限りではない。

(4) 支柱定着部の補強
 橋梁用防護柵支柱の定着部については、「防護柵設置基準・同解説」(平成28年12月、日本道路
 協会)(別添2「橋梁ビーム型防護柵の設計」)に示されている各種の応力照査を行ない、支柱部の
 補強鉄筋を配筋するものとする。ただし、標準図と設計条件が同一の場合にはこの限りではない。

【解説】

(1) 高欄の定着位置については特に定められたものはないので、構造上最も望ましいと考えられる地
覆の中心とした。車道地覆の建築限界については、道路構造令によると路肩を設けない道路、また
は長さ50cm以上の橋梁で路肩も路肩としてカウントしている場合についてのみ②の地覆の車道側
前面より25cm後方設置となるわけだが、ここでは車両と防護柵との接近による損傷を考慮して一般
にこれを拡大運用することとした。

(2) 定着方法としては、埋め込み方式とベースプレート方式の2種類がある。
 埋込み方式の構造については、「防護柵の設置基準・同解説」では「埋込鋼管+モルタル充填」とな
っている。これは施工方法として箱抜き方式による防護柵の後施工をイメージしたものと考えられ
るが、標準図では支柱定着部の凍結等を考慮してこれによらず、従前から行なっていた防護柵と地
覆の同時施工によるものとし、埋込鋼管に対する代替措置としてスパイラル鉄筋を配筋した。
 これまで、埋込み方式では支柱の四隅にクラックが発生するなど、品質、維持管理の面で何らか
の対策を必要とする場合があった。そこで、地覆部の品質確保や部分取替えなどの維持管理性の向
上を目的としてベースプレート方式の標準図を作成した。
 また、I型断面の支柱をアンカーボルトで地覆に定着する方法についても、維持管理性については
ベースプレート方式と同様であり、かつ支柱の内側にアンカーボルトが取まるという特徴がある。

(3) 埋込み方式の埋込み長は、「防護柵の設置基準・同解説」に示されている値を確保するものとし
た。また、ベースプレート方式の標準図作成にあたっては、「車両用防護柵標準仕様・同解説」の
「解説・参考資料 2-2支持条件の変更の適用例」に従って計算を行った。

3-7-21【H26.04改訂】
7.4.7 橋梁用防護柵の形状及び材料の選定

橋梁用防護柵は、構造的な強度、景観、防錆等を考慮して、形状及び材料を適切に選定しなければならない。
特に、景観に関しては、「景観に配慮した防護柵の整備ガイドライン」（平成16年3月、日本道路協会）の趣旨を踏まえた計画が必要である。

【解 説】

橋梁用防護柵は前述した構造的な強度を有していることが第1条件であるが、景観に対して十分な配慮が必要である。したがって形状、材料の選定は、「景観に配慮した防護柵の整備ガイドライン」の趣旨を踏まえ、架橋位置および利用状況に適したものを選定しなければならない。
7.4.8 橋梁用防護柵の防錆

| 1 | 防護柵に用いる金属材料は十分な防錆・防食処理を施すものとする。防錆・防食法は設置する区間の地域環境及び気象条件等を勘案して選定するものとする。

| 2 | 色彩計画に関しては、「景観に配慮した防護柵の整備ガイドライン」（平成16年3月、日本道路協会）の趣旨を踏まえた計画が必要である。

【解 説】

| 1 | 防護柵に用いる金属材料などに錆または腐食が生じると、強度が著しく低下するなどにより防護柵の機能に大きな問題が生じる。このことから、これら錆または腐食を生じる金属材料などについては、JIS規格または同等以上の効果を有する方法により十分な防錆・防食処理を施すものとしている。また、海岸地帯または重工業地帯に存する区間や交通量が非常に多い区間など防錆・防食に対して厳しい環境の区間に設置される防護柵については、さらに防錆・防食処理を高めた処理を施すものとしている。

| 2 | 色彩の決定においては、周辺環境の中で必要以上に目立たせない塗装色の選定が重要である。防護柵の色彩に景観的な配慮が必要な場合の基本的な考え方※1を下記に示す。

鋼製防護柵の場合

- 橋梁ビーム型防護柵等、塗装面が比較的小さい防護柵は、明度、彩度が低く目立ちにくいダークブラウンを基本色とする。
- ガードレール等、塗装面が比較的大きい防護柵はダークブラウンとすると重たい印象となるため、若干明度の高いグレージュを基本色とする。
- 地域特性（例えば、歴史的建造物の周辺など）に応じて、ダークグレー、オフホワイトも基本色の候補色に加え、適切な色彩を選定する。

鋼製防護柵以外の場合

- アルミ製防護柵やステンレス製防護柵については、素材そのものの色彩を活かすことを基本とするに周辺環境との融和を図る場合で、周辺の基調色がYR系を中心とする場合は、鋼製防護柵の基本色に近い色彩を基本とする。
- コンクリート製防護柵については、素材が本来有している色彩を活かすことを基本とする。
- 木製防護柵において塗装や紡織処理を行う際には、素材そのものの色彩や木目等の活用に配慮する事は基本とする。

※1 「防護柵の設置基準に関する講習会 講義要旨P.3-27〜28」（平成16年度 日本道路協会）より抜粋
7.4.9 橋梁用防護柵の標準設計図

橋梁用防護柵の標準設計図として以下のものを制定するので参照されたい。

(1)	車両用防護柵（A種）	(7)	高欄兼用車両用防護柵（C種）
(2)	車両用防護柵（B種）	(8)	コンクリート壁式防護柵（SB種）
(3)	車両用防護柵（C種）	(9)	コンクリート壁式防護柵（SC種）
(4)	歩道用高欄（縦桟型）	(10)	ガードレール（A種）
(5)	高欄兼用車両用防護柵（A種）	(11)	ガードレール（B種）
(6)	高欄兼用車両用防護柵（B種）	(12)	ガードレール（C種）

【解 説】

前述した各規定により設計を行ない上記標準設計を定めた。橋梁用車両防護柵については、各部材について建設省土木研究所において静荷重試験を行ない安全性を確認した。
また、電子計算機による衝撃シミュレーションも実施して性能を確認している。
また、歩道用高欄および高欄兼用車両用防護柵は、幼児のすり抜け防止を図る目的で「縦桟型」を標準とする。この場合、部材間隔は15cm以下とするのが良い。

なお、標準設計を用いる場合は橋梁の線形（曲線橋や縦断曲線）を勘案し十分な検討を行った上で採用の可否を決定すること。

参考文献

(1) 防護柵の設置基準・同解説（平成28年1月・日本道路協会）
(2) 車両用防護柵標準仕様・同解説（平成16年3月・日本道路協会）
7.4.10 床版に与える影響

床版片持ち部の設計における衝突荷重による曲げモーメントは標準図使用の場合には表7.4.1によって算定するものとする。これ以外の防護査を用いる場合には、支柱が有する最大支持力を用いて算定するものとする。

表7.4.1 支柱の最大支持力

<table>
<thead>
<tr>
<th>種别</th>
<th>支柱の最大支持力</th>
<th>支柱の間隔</th>
</tr>
</thead>
<tbody>
<tr>
<td>A種</td>
<td>58.8 kN</td>
<td>2.0m程度</td>
</tr>
<tr>
<td>B種</td>
<td>41.2 kN</td>
<td>"</td>
</tr>
<tr>
<td>C種</td>
<td>26.5 kN</td>
<td>"</td>
</tr>
<tr>
<td>歩道用高欄</td>
<td>-</td>
<td>"</td>
</tr>
</tbody>
</table>

衝突荷重による曲げモーメント

\[M_s = k \times P \times h / B_o \] (kN・m/m)

- \(P \) : 支柱の最大支持力 (kN)
- \(k \) : 低減係数 (=0.5)
- \(h \) : 床版中心からの主要横梁中心までの高さ (m)
- \(B_o \) : 荷重を受けるコンクリート床版有効長 (m)

(床版中間部は、支柱間隔、床版端部は、床版中間部有効長の1/2)

\[B_o = L_p \]

\[L_p \] : 支柱間隔 (m)

図7.4.7 衝突荷重による曲げモーメント

コンクリート製壁型防護査を用いる場合には、「防護査の設置基準・同解説」における衝突荷重を用いて照査するものとする。
7.4.11 高規格道路における中央分離帯の形状

(1) 中央分離帯の形状は、中央分離帯幅によってガードレールあるいは鉄筋コンクリート壁式防護柵に対応した形状とするのがよい。

(2) 跨道橋、跨線橋の場合、中央分離帯幅に関わらず鉄筋コンクリート壁式防護柵を設置するものとする。

【解説】

(1) 中央分離帯の形状は、中央分離帯幅によって図7.4.8、図7.4.9の様にガードレール、鉄筋コンクリート壁式防護柵に対応した形状とする。なお、中央分離帯の高さはガードレールの場合120mmとする。

(2) 分離帯遊間からの落下による2次的災害を防止するため跨道橋、跨線橋の場合には中央分離帯幅に関わらず鉄筋コンクリート壁式防護柵を設置するものとした。
7.4.12 転落防止施設

(1) 4車区間（ダブルウェイ）の分離橋梁部箇所では、金網または鋼製蓋等による中央帯からの転落防止、落下物防止のための必要な対策を行うものとする。

(2) 鋼製蓋タイプの設計荷重は、(0.75kN×2人)とし、雪荷重は考慮しないものとする。

【解説】

(1) 分離橋梁区間では、地覆間に以下の目的のために転落防止施設を設置するものとする。

a) 緊急時の中央分離帯の横断
b) 維持管理の緊急横断
c) 跨線橋、跨道橋等で、桁下への落下物、落雪等を避ける必要のある箇所

金網タイプは、通常の転落防止施設として用いる。本タイプについては「道路設計要領 第6集（標準設計図集）」を参照されたい。

鋼製蓋タイプは、落下物防止を兼ねた施設であり、跨道橋、跨線橋等の桁下空間の利用計画がある部分に適用し、端部小口を閉塞する構造とする。

(2) 鋼製蓋対応の設計荷重は、0.75kN×2人＝1.50kNとするものとした。なお、雪荷重については、除雪を前提として考慮しないものとした。

7.4.13 コンクリート製壁式防護柵の止水対策

コンクリート製壁式防護柵には、水のしみ出しを防止するための対策を行うこととする。
対象箇所を以下に示す。

① コンクリート製壁式防護柵の目地部
② 主桁伸縮装置位置のコンクリート製壁式防護柵の不連続部

なお、伸縮装置は非排水型を使用するものとする。

【解説】

(1) コンクリート製壁式防護柵の目地部には、つららの発生や目地部付近のコンクリートの劣化を防止するため、止水対策を行う。対策方法としては、10mmの目地部に、バックアップ材の充填の他に、目地部外部にシール材等の充填等を施すのが良い。

(2) 主桁伸縮装置位置のコンクリート製壁式防護柵の不連続部には間隙が生じるため、除雪時の残雪等により地覆付近につららが発生したり、橋脚の凍害の原因となっている。よって、この間隙を覆う対策を行うものとする。対策に際しては桁の伸縮、維持管理、壁高欄との一体化等に配慮する必要がある。

(3) つらら防止対策は中央分離帯のみならずコンクリート製壁式防護柵全般に対応するものとする。
7.5 落橋防止システム

7.5.1 落橋防止システム

落橋防止システムは、道示(H29) V編 の規定による。
7.6 橋梁維持・管理用施設

7.6.1 一般

橋の点検・維持・補修・改良の作業を容易にするため、橋の規模、型式及び架橋位置の条件などを考慮して、維持管理用施設を設けるものとする。

【解説】

最近自動車保有台数の増加、重車両交通の増加などによって、点検・補修・改良などの回数も増大している。点検・補修・改良の作業を容易にするため、また、橋の現況を正確に把握するためにも、橋の各部に容易に行えるような構造とする。

7.6.2 橋梁用検査路

(1) 橋梁用検査路は、地表または路面、あるいは下部工から容易に橋梁本体、床版下面、支承、排水装置等の各部に行くことができ、点検と維持・補修作業ができる構造とする。

(2) 検査路の設計条件等については、「道路橋検査路設置要領(案)H24」に準拠する。

【解説】

橋梁用検査路は、橋台、橋脚、主桁、床版、塗装、支承、排水装置等の点検・保守のために装置するものであり、検査路は、上部構造検査路、下部構造検査路、昇降設備の3種類からなっている。検査路、昇降梯子、手摺、取付部材は、原則として、全て溶融亜鉛メッキ処理を行う。

検査路の設計条件や計算方法等については、「道路橋検査路設置要領(案)H24」に準拠する。

なお、検査路の設計基準および種類別設置基準を下記に示す。

(1) 上部構造検査路・下部構造検査路

1) 設置位置は、床版の点検が行なえる易い様に走行車線の近い桁間に設置するのが良い。
2) 上部構造検査路、下部構造検査路の有効幅員は、60㎝を標準とする。
3) 床材は、エキスパンドメタルを標準とする。
4) 手摺は高さ110㎝を標準とする。

※鉄道を高架する跨線橋については、全ての主桁間に上部構造検査路を設置するなど、維持管理の確実性および容易さについて十分な検討を行うこと。

(2) 昇降設備

1) 梯子の幅員は40㎝、ステップの間隔は30㎝を標準とする。
2) 梯子にバスケットを設けること及び、内径は85㎝を標準とする。
3) 降下式

 地覆外にステージを設けることを標準とする。
4) 上昇式

 梯子の下端は、地表面から2.5mに設置するのを標準とする。

(3) 設計荷重

1) 検査路に作用させる設計活荷重は、3.5kN/m²とする。
2) 橋体を設計する場合は、1)の設計荷重3.5kN/m²は考慮しないものとする。
3) 橋体を設計する場合は、設計死荷重1.0kN/mを考慮するものとする。
4) 手摺上端に作用させる設計荷重は、水平力0.39kN/m、鉛直力0.59kN/mとする。

3-7-29【H30.04改訂】
検査路の構造細目については、「道路橋検査路設置要領(案)H24」を基本とし、エキスパンドメタル仕様については、下図を参照のこと。

図7.6.1 エキスパンドメタル仕様の構造例
桁高の高い橋梁の橋台部においては、伸縮装置の下面からの点検やPC桁橋の端部の定着部等の点検を容易にするため、上・下部工検査路に加え、桁遊間部に「検査通路」を設けることとする。

検査通路は、桁またはパラペットを切欠くことにより、通路幅を600㎜程度確保する。通路高は、800㎜程度以上確保する。

図7.6.2 検査通路の設置例（桁を切り欠いた場合）
7.6.3 維持用装置

維持用装置は、日常の維持点検、塗装作業等のため、作業員の手摺、吊金具、横桁の開孔、箱桁の足場搬入、搬出および有機溶剤排除等のマンホール、送風管等があるが、作業用として十分安全な構造とすること。

【解 説】

(1) 吊足場用吊金具は、桁高1.0m程度以上の桁橋、箱桁の全橋に設けるのを標準とする。設置箇所については各橋梁の架設計画、架構位置条件等を考慮して決定するものとする。吊り間隔はAタイプ1.8m程度以下、Bタイプ1.0m程度以下とする。

標準的な形状寸法を用途に分けて以下に示す。また、標準的な取付け位置も合わせて示す。

吊足場用吊金具の取り付け方法は、溶接継手（既設橋の場合は現場溶接も含む）およびボルト接合のいずれかの方法を用いて良い。溶接継手の場合、すみ肉溶接サイズは4mm以上とするが、荷重条件等により計算をともなう場合は、道示（H29）Ⅱ編により照査を行う。

Aタイプ：上フランジ下面に付ける標準的なタイプである。但しRC床版打設時の支保工用支に兼用する場合にはBタイプを用いるものとする。

Bタイプ：塗装及びRC床版打設吊り金具で、外桁に設置するものである。

また桁高が比較的高い場合は、桁の中段付近に吊金具を設けても良い。

ただし桁中段の吊金具は非常に目立つことから、その採用にあたっては施工性、維持管理性について十分な検討を行うこと。また、景観性が求められる橋では、桁中断の吊り金具の整備に際して景観性を十分に考慮すること。

図7.6.3 吊金具取付位置（寸法単位：㎜）

(2) 手摺金具は、耳桁の内面および中桁両面に必要により取り付けることとする。

構造形状は図7.6.4を参考とする。

手摺りの設計荷重は、歩行者自転車用柵（P種）と同程度と考え、W=590N/mとする。また、許容応力の割増は1.25（施工時）とする。

図7.6.4 手摺り金具（寸法単位：㎜）
(3) PC橋において吊足場用の金具等が必要な場合は、「道路橋検査路設置要領（案）」を参考に検討するのがよい。ただし、既設橋梁にアンカー等を設置する場合は、既設コンクリートの強度や劣化状況等、アンカーの設置の可否について確認の上、金具等の設置方法を検討すること。

(4) 横桁等横断の困難な箇所に通路用の孔をあけるのを標準とする。箱桁下フランジには足場用の孔を橋軸方向間隔5〜6mで対傾構の位置に設けるのを標準とする。

マンホールの大きさは、維持管理通路用として600×800とするが、桁高が低い場合などの構造上無理な場合は可能な大きさとする。
なお、開孔部は十分に補強するものとする。（図7.6.5、図7.6.6）

図7.6.5 通路用の開孔（寸法単位：㎜）

図7.6.6 マンホール詳細図（寸法単位：㎜）

(4) 地覆間が分離されている場合、落下物の危険のある箇所では、人が乗っても安全な金網等の構造にし、ご線部、こ道部では維持管理を考慮したふた構造とする。
なお、参考図を図7.6.7に示す。

図7.6.7 中央分離帯転落防止網の構造
7.7 踏掛版等

7.7.1 踏掛版の設置箇所および版の長さ

車道の踏掛版の設置箇所および版の長さは、橋台型式、盛土高、裏込材料、地盤種類等から表7.7.1の値を標準とする。

表7.7.1 踏掛版の長さ

<table>
<thead>
<tr>
<th>橋台型式</th>
<th>地盤の種類</th>
<th>普通地盤</th>
<th>軟弱地盤</th>
</tr>
</thead>
<tbody>
<tr>
<td>構造物底面からの盛土高</td>
<td>オープン型、転圧によって細粒化しないもの</td>
<td>LA=5.00m</td>
<td>LA=5.00m</td>
</tr>
<tr>
<td>裏込材料</td>
<td></td>
<td>LA=5.00m</td>
<td>LA=7.00m</td>
</tr>
<tr>
<td>下記以外の型式</td>
<td></td>
<td>LA=5.00m</td>
<td>LA=7.00m</td>
</tr>
<tr>
<td>4m未満</td>
<td></td>
<td>LA=5.00m</td>
<td>LA=7.00m</td>
</tr>
<tr>
<td>4m以上8m未満</td>
<td></td>
<td>LA=7.00m</td>
<td>LA=7.00m</td>
</tr>
<tr>
<td>8m以上</td>
<td></td>
<td>LA=7.00m</td>
<td>LA=7.00m</td>
</tr>
<tr>
<td>盛りこぼし型式</td>
<td></td>
<td>LA=5.00m</td>
<td>LA=7.00m</td>
</tr>
<tr>
<td>4m未満</td>
<td></td>
<td>LA=5.00m</td>
<td>LA=7.00m</td>
</tr>
<tr>
<td>4m以上8m未満</td>
<td></td>
<td>LA=7.00m</td>
<td>LA=7.00m</td>
</tr>
<tr>
<td>8m以上</td>
<td></td>
<td>LA=7.00m</td>
<td>LA=7.00m</td>
</tr>
</tbody>
</table>

歩道の踏掛版の設置箇所は、車道に準じるものとし、長さはLA'=3.00mとする。

【解説】

(1) 踏掛版は、橋台背面の盛土および路盤沈下による走行性の低下を防ぎ、橋梁本体への衝撃を緩和し、維持補修費の低減等を計るために設けるものとする。

(2) 軟弱地盤とは、載荷盛土工法、サンドドレン工法、サンドコンパクション工法などの対策工法を施工する区域を言う。
7.7.2 踏掛版の設置位置および設置幅

(1) 踏掛版はその上面が路面と平行であり、かつ路面からの位置は表7.7.2を標準とする。

(2) 踏掛版の設置幅(車道W、歩道W')は次による。
 歩道のない場合 \[W = \text{車道幅} + \text{路肩幅} + 2 \times 0.05 \text{ (m)} \]
 歩道のある場合 \[W = \text{車道幅} + \text{路肩幅} + \text{縁石基礎幅} \]
 \[W' = \text{歩道幅} - \text{縁石基礎幅} \]

表7.7.2 踏掛版の路面からの位置

<table>
<thead>
<tr>
<th>輪装計画交通量</th>
<th>100以上</th>
<th>250未満</th>
<th>250以上</th>
<th>1000未満</th>
<th>1000以上</th>
<th>3000未満</th>
<th>3000以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>車道部Tp</td>
<td>70</td>
<td>90</td>
<td>90</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>歩道部Tp'（歩道路盤厚）</td>
<td>270</td>
<td>290</td>
<td>290</td>
<td>310</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

歩道路盤厚 = Tp' - 歩道舗装厚（30㎜）

【解説】

図7.7.1に歩車道部踏掛版の設置を示す

図7.7.1 歩車道部踏掛版の設置位置
7.7.3 踏掛版の設計

踏掛版の設計は、道示(H29) IV編 P545 参考資料 4.踏掛版の設計法(案) による。

(1) 使用材料および許容応力度
鉄筋(SD345) $\sigma_{sa}=180N/mm^2$
コンクリート(RC-2-1) $\sigma_{ca}=8.0N/mm^2$

(2) 鉄筋の配置
鉄筋のかぶりは70mm以上とする。
引張側主鉄筋、引張側配力鉄筋の間隔は150mm、圧縮側鉄筋の間隔は300mm程度とする。
引張側の配力鉄筋は引張主鉄筋の1/4以上とする。
圧縮側主鉄筋は引張主鉄筋の1/3以上とし、配力鉄筋は引張側の1/2程度とする。

(3) 踏掛版の構造寸法および鉄筋量は北海道開発局道路設計要領 第6集(標準設計図集)による。
ただし、構造上、舗装厚が厚くなったり、踏掛版の上に路盤材が設置される場合などは、別途、道示(H29) IV編 P545 参考資料 4.踏掛版の設計法(案) を参考に設計し、構造寸法および鉄筋量を適切に決定しなければならない。

【解 説】
表7.7.3に第6集(標準設計図集)の踏掛版応力度を示す。

![表7.7.3 踏掛版応力度](image)

3-7-36【H25.04改訂】
7.7.4 斜角を有する踏掛版

(1) 斜角を有する場合の運用
1) 斜角75°以上90°未満の場合には標準図を変形させ、そのまま用いるものとする。
2) 斜角60°程度未満の場合や広幅員の場合は、踏掛版を、バチ形とするか、またはすり付け版を設けるのが望ましい。(図7.7.2)

(2) 構造および設計条件
1) 斜角を有する踏掛版の設計支間は、図7.7.3に示すLの70%とする。
2) 主鉄筋の配置は橋軸方向と一致させる。
3) 斜角60°以上75°未満の場合、引張鉄筋側の配力筋は、引張主鉄筋の2/3程度、圧縮鉄筋側の配力筋は引張側配力筋の1/2程度とする。
4) 斜角60°未満の場合には受台側斜版鈍角部の上側に引張主鉄筋と同量の鉄筋を配置し、鉄筋を配置する範囲は橋軸方向、橋軸直角方向ともに支間の1/5とする。

図7.7.2 すり付版の設置例

図7.7.3 鉄筋の配筋方向
参考資料

① すり付け版（短辺）の最低長⇒舗装設計便覧（平成18年2月）P.207〜 3.00m以上
② 踏掛版とすり付け版との連結⇒タイバーD29×700 @ 400
③ すり付け版の設計⇒踏掛版と同様

・ 一般国道：有効幅員8.5m（1.0+3.25+3.25+1.0）、斜角45°の場合

・ 高規格道路：有効幅員10.5m（1.75+3.50+3.50+1.75）、斜角45°の場合

※すり付け版の長辺側延長が7.0以上と踏掛版の延長より長くなるが、長辺側で計算して問題なければよい。
7.7.5 橋台背面処理

(1) 盛土(裏込め)材料
橋台背面の盛土(裏込め)は、特に良質で十分締め固められる材料を用いるものとする。

(2) 排水処理
橋台背面には、水の浸透による背面土圧の増大、静水圧の増加等に対処するため、侵入した水は、適当な方法によって排水しなければならない。
排水方法は次によるものとする。
1) 橋台壁面には、集水用フィルター層及び排水孔を設けるものとする。
2) 橋台背面の盛土(裏込め)材料内に浸透水が多いと予想される場合は、必要の程度により縦横あるいは層状に排水溝を設け、すみやかに橋台背面の路体外に排水するものとする。
止むを得ず橋台前面またはウイング前面に排水する場合は、壁面排水孔が開塞しないよう十分な処理を行うものとする。
3) 橋台背面に多量の出水または流水路がある場合は適当な集水管により、適切に排水を図るものとする。
4) 橋台が河川築堤内に設けられる場合は、築堤断面内は築堤盛土材料と同一の材料で築造または埋め戻すものとし、排水処理は築堤断面外のスペースでかつ築堤に有害な影響を与えない方法によらなければならない。

【解 説】

橋台背面排水処理は、道路構造、地形条件、浸透水等の程度などにより多様なものであるが、一般には次によるものを標準とする。

図7.7.4 橋台背面排水処理図
図7.7.5 集水・排水溝の例

注) 1②③を設置する水平方向間隔は、2m程度を標準とする。
(1) フィルター層
 1) 材料は合成繊維質フィルター材を用いるのを標準とする。
 2) 設置間隔は排水孔に十分集水できる程度とする。

(2) 排水孔
 1) 材料はプラスチックパイプ (VP管) φ100㎜程度を標準とする。
 2) 設置位置は排水が良好に行われる高さで、しばしば閉塞する恐れのない高さに1段を標準とする。

(3) 集水溝または排水溝（必要により設ける場合）
 1) 形状寸法及び材料は、道路工事設計基準の地下排水（路床排水及びしゃ断式盲暗渠工）の規程に準ずるものとする。
 2) 設置位置は、湧水または浸透水をすみやかに排水できるよう湧水箇所、切盛土界、または縦横あるいは層状に設けるものとする。数段層状に設ける場合は、相互の集水範囲を考慮して定めるものとする。
 3) 多量の出水のまたは流水路がある場合は別途考慮のこと。
（「道路設計施工要領 第1集 道路 6.5集水溝および雨水溝 （10）橋台付近の排水」参照）
橋台ウイング(擁壁)端部の盛土巻き込み部において、豪雨時に路面の流水が集中し崩壊、流出している事例がある。特に歩道部のない道路盛土に被害が多い。
一般的に橋梁は、道路縦断の凹部に計画させることが多いため、流水が集中する。
これより以下の対策例を参考にして、排水処理に十分留意するものとする。

(1) 橋台ウイング(擁壁)端部で排水桝を設置し、盛土巻き込み部への流水を防止する。

(2) 盛土巻き込み部の法面保護工は、桁下空間高さ、橋梁幅員等の条件を考慮し、適切な工法を採用するものとする。

(3) 歩道部のない道路の場合は、導水線石（アスカーブ）をウイング端部に接続し、路面流水が盛土巻き込み部へ流れないようにする。

(4) 盛土巻き込み部の転圧を十分に行い、侵食防止のため植生工等または、法面保護工を施工する。必要に応じ、洗掘防止の為の蛇篭等の設置を計画する。

橋台付近の排水(例)

注) 縦断線形
① 終点側に下り：集水桝(導水水抜)設置
② 終点側に上り：集水桝(導水水抜)設置せず

図7.7.6 橋台付近の排水
7.8 落下物防止柵他

7.8.1 種 類

本章で扱う施設は以下の4種類である。

(1) 落下物防止柵（鉄道部）: 鉄道を跨ぐ跨線橋に設置する。
(2) 落下物防止柵（道路部）: 道路（民家）を跨ぐ、あるいは跨道橋（高架橋）に設置する。
(3) 飛雪防止柵: 除雪による本線、一般道路、その他への被害を防止するために設置する。
(4) 遮音壁: 騒音対策のために設置する。

【解 説】

本章で扱う施設はすべて橋梁路側外に対する安全のために設置するものである。これらの施設の設置高さは路面から、鉄道部用落下物防止柵は3.0m、道路用落下物防止柵は2.0m、飛雪防止柵は2.5mとするが、鉄道部用落下物防止柵は鉄道管理者との協議により決定するものとする。また、遮音壁については設置箇所の周辺状況を勘案して設置高さを決定するものとする。

7.8.2 設置箇所

(1) 落下物防止柵（鉄道部）の設置箇所
 イ）鉄道を跨ぐ、あるいは近接する区間。

(2) 落下物防止柵（道路部）の設置箇所
 イ）高規格道路または一般道路を跨ぐ、あるいは近接する区間。
 ロ）民家を跨ぐ、あるいは近接する区間。
 ハ）その他、特に必要と認められる区間。

(3) 飛雪防止柵の設置箇所
 イ）(2)の設置箇所と同様であるが、採用に際しては積雪量、除雪方法を考慮して決定するものとする。
 ロ）鉄道部は飛雪の影響を考慮しない。

(4) 遮音壁の設置箇所
 イ）騒音対策が必要と認められる箇所に設置する。

なお、(1)～(3)の各防止柵を兼ねてよい。

【解 説】

飛雪防止用柵は、交通量の多い主要道路を横架したり、民家に平行隣接する橋梁、高架、ボックスカーブ等の除雪作業に伴い、交通機関、人家に損害を与える恐れがある箇所に設置することとする。
(2)における「近接区間」は、表7.8.1および図7.8.1を参考に判定すると良い。
表7.8.1 近接区間の判定表

<table>
<thead>
<tr>
<th>H(m)</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
<th>28</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>d(m)</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

H : 対象施設の基面から高速道路等の路面までの高低差(m)
d : 高速道路等の端から対象施設の端までの距離(m)

上表に示す距離d(m)以下の場合は、「近接区間」と判定する。

図7.8.1 近接区間の判定方法
7.8.3 設置範囲

各防止柵の設置範囲は以下のとおりとする。

(1) 落下物防止柵（鉄道部）：交差幅＋両側余裕幅
(2) 落下物防止柵（道路部）：交差幅＋手前余裕幅（解説参照）
(3) 飛雪防止柵：交差幅＋手前余裕幅＋後方余裕幅
手前余裕幅は(2)に同様とする。また後方余裕幅は9m程度とする。
(4) 遮音壁：騒音対策が必要と認められる範囲

【解説】

(1)～(4)の施設は一般に地貫、防護柵等に取り付けられ、その設置範囲も一定の長さ以上のものとなる。よって、設置計画に際しては本線利用者の走行性、快適性を損なわないこと、および本線外からの違和感を感じさせない等の配慮が必要である。

なお、交差幅とは交差道路幅をいい、(1)の「両側余裕」とは、交差幅の両側に手前余裕幅を設置することを意味する。
手前余裕幅Lは次式によるものとする。

\[L = V_0 \sqrt{\frac{2(H+3)}{g}} \left(\cos 15° + \sin 15° \div \tan \alpha \right) \]

ただし、\(\alpha = 90° \) の場合 \(L = V_0 \sqrt{2(H+3)} \cos 15° \)

ここで、
\(V_0 \) : 落下物の路外逸脱速度 \(V_0 = 0.133V(m/s) \)
\(V \) : 設計速度(km/h) の場合、\(V_0 = 8.0(m/s) \)
\(V \) : 設計速度(km/h) の場合、\(V_0 = 11.0(m/s) \)

\(H \) : 対象施設の基面から本線道路等の路面までの高低差(m)
\(\alpha \) : 対象施設と本線道路等の交差角度
（但し、近接する区間は\(\alpha = 90° \)として良い。）
\(g \) : 重力加速度(9.8m/s²)

図7.8.2 落下物防止柵等の設置範囲
7.8.4 設置荷重条件

使用箇所別に以下の荷重設計条件によるものとする。

<table>
<thead>
<tr>
<th>使用箇所</th>
<th>設計条件</th>
</tr>
</thead>
</table>
| 落下物防止柵（鉄道部） | イ) 風荷重（3.0kN/m²）する。（外側より）
ロ）路面より3.00mの高さに重量3kNの積み荷が速度60km/hで防止柵に15°の角度で水平に衝突したものとする。（内側より） |
| 落下物防止柵（道路部） | イ) 風荷重（3.0kN /m²）のみとする。（外側より） |
| 飛雪防止柵 | イ) 風荷重（3.0kN /m²）とする。（外側より）
ロ）飛雪荷重（3.0kN /m²）とする。（内側より） |
| 遮音壁 | イ) 風荷重（3.0kN /m²）とする。（外側より）
ロ）（1）～（3）を兼ねる場合は各々の設計荷重条件とする。 |

【解 説】

橋梁上部工、下部工および付属物の設計において、土地の状況等により将来、周辺施設の整備により（1）～（4）が必要となる可能性がある場合は当該設計荷重を想定したものとする。

各防止柵の構造詳細については、「道路設計要領第6集標準設計図」を参照すること。
7.9 はく落防止対策

7.9.1 一般

はく落防止対策は、橋梁を構成するコンクリート部材の一部が落下して第三者に与える被害を予防することを目的とする。

【解 説】
本項に基づく措置は、コンクリート部材の一部が落下することによる第三者被害の重大性に鑑み、橋梁に対してこの予防策を講じることにより第三者被害の軽減を図ることを目的に実施する。

したがって、塩害やアルカリ骨材反応によってコンクリート部材全体が著しい損傷を受けて全面的な落下防止対策等が必要な場合は、別途対策を検討する必要がある。

はく落防止対策を計画する上での調査方法や適応範囲については以下の文献を参考にするのがよい。
参考文献：「橋梁における第三者被害予防措置要領（案） 国土交通省 道路局 国道・防災課」（以下、第三者被害予防措置要領）
「コンクリート片落下による第三者被害の予防措置技術の性能試験法に関する調査検討 国土交通省 国土技術製作政策総合研究所」

7.9.2 適用範囲

適用範囲は、コンクリート部材の一部が落下する可能性のある全ての部位とする。

【解 説】
対象橋梁は、
① 桁下を道路が交差する場合
② 桁下を鉄道が交差する場合
③ 桁下を公園あるいは駐車場として使用している場合
④ 近接して側道又は他の道路が併行する場合
等、第三者被害の危険性が想定される橋梁とする。

はく落防止対策は、コンクリート部材の一部が落下する可能性のある全ての部位とし、適応範囲は第三者被害予防措置要領の「付録1 第三者被害を予防するための点検対象範囲」と同じ範囲とする。

図7.9.1 道路橋概要図
第三者被害予防措置要領「付録-Ⅰ 第三者被害を予防するための点検対象範囲」より

1. 調査対象とする橋梁

調査対象とする橋梁は、本文1、解説に記載の、
① 構下を道路が交差する場合
② 構下を鉄道が交差する場合
③ 構下を公園あるいは駐車場として使用している場合
④ 近接して側道又は他の道路が並行する場合
等、第三者被害の可能性がある橋梁とする。

2. 措置対象範囲の標準

措置対象範囲は、以下の図に示す線範囲を標準とする。

(1) 交差物件が道路、鉄道などの場合。
① 下部工前面が俯角75°より離れている場合
② 下部工前面が俯角75°の範囲に入る場合
(2) 交差物件が河川などの場合

* 河川内で高水敷が河川公園等で第三者が立ち入る可能性がある場合の措置範囲は
 a又は水際線、b又は水際線から75°範囲内の上部工とする。
* 下部工については(1)の①及び②と同様の考え方とする。

(3) 並行条件の場合

① 並行する物件（道路等）から俯角75°より離れている場合

点検対象なし
② 並行する物件（道路等）から俯角75°の範囲に入る場合

○ ケース1

○ ケース2
○ケース3

○ケース4
7.9.3 はく落防止対策工の選定

(1) 対策工の選定は、対象部材の形状・寸法等に対して、経済性、施工性、維持管理性等を考慮し決定する。

(2) 既設部材に対するはく落防止対策は、コンクリート部材の損傷状況を把握し、必要に応じて補修対策を行った上ではく落防止対策を実施する。

【解説】

(1) はく落防止対策工は、短繊維を混入した繊維補強コンクリートを用いてはく落を防止する方法と、アラミド繊維などを主材料とする連続繊維シートタイプのものが一般的に用いられている。ただし近年は、新技術・新工法の開発が進んでいることから、経済性や施工性等を十分に検討の上、対策工を決定する。

また、新設橋と既設橋では仕様や施工方法等が異なることから、対象部材や対象範囲を含め、個々の条件を考慮した検討が必要である。

(2) 既設橋梁に実施するはく落防止対策工では、既設部材の劣化・損傷状況に応じてひび割れ補修や断面修復を行う必要があるため、コンクリート部材の損傷状況を十分に把握する必要があります。

はく落防止シートの落下対策事例を下記に示す。

【剥落防止シート端部処理方法】

- 現地調査により、剥落防止シートが確認された場合は確実に取り除き、断面を修復する。
- 鉄筋から錆汁が出ている箇所については、鉄筋の錆落としを十分に行った後、鉄筋の防錆処理を行う。

【はく落防止シート端部処理方法】

- 剥落防止シート端部からの水の浸入を防止するため、はく落防止シート端部にコーティング材等により補強する。
- アンカー等ではく落防止シートの剥離を防止する場合は、アンカー部にもコーティング材を塗布し、水の浸入を防止する。
- はく落防止シートを採用する場合、シートの内側に水が溜まることでコンクリートの凍害劣化を促進する場合があるため、透湿型材料の採用等の検討が必要である。

図7.9.2 剥落防止シートの落下対策事例