■【上流】砂防堰堤が整備されている付近より上流の源頭部付近で土石流が発生しているとみられる。源頭部付近は周氷河性堆積物が分布するケースが多い。土石流によって流下してきた2.0m以下程度の礫等は砂防堰堤により効果的に捕捉されていると見受けられる。
 ■【中~下流】砂防堰堤から砂防計画基準点までの区間は扇状地にあたり、床固工群及び渓流保全工が整備されている。3°~1°程度の河床勾配であり、区間を通して渓岸侵食がみられる。この区間は水面と扇状地面との比高差が小さく氾濫が発生している箇所があるがごく一部にとどまっている。



■ペンケオタソイ川の基岩は主に花崗閃緑岩及び花崗岩で、周氷河性斜面堆積物(崖錐堆積物)が基岩を覆って広く分布している。(写真②)
 ■本川・南の沢川・中の沢川・北の沢川の上流で土石流が発生し、縦侵食が卓越しているが(写真①)、中流域から大規模な渓岸侵食が連続しており、洪水が蛇行して流下したと考えられる。(写真③)
 ■洪水の蛇行によって床固工施設の袖抜けや(写真④)、流木の閉塞によって橋梁が流失した。
 ■1号砂防堰堤地点より上流が土石流、下流が掃流の土砂移動形態である。



■北の沢川の土石流は1号砂防堰堤が捕捉し、中の沢川の土石流は2号砂防堰堤が捕捉し、南の沢川の土石流は3号砂防堰堤が捕捉しており、ペンケオタソイ川本川合流点での土石流堆積による河道閉塞は起こっていないと見られる。



▲合流箇所位置図



▲ペンケオタソイ川3号砂防堰堤堆砂域

3号砂防堰堤 水油しまで1-砂水地 ペンアオタリイル (1/28.9 撮影)

▲ペンケオタソイ川3号砂防堰堤の満砂状況 31

■河川改修区間に上流から流出した土砂が河道に堆積したものの(写真①),河川改修区間において洪水の氾濫はない。



- 【上流】1号砂防堰堤より上流の源頭部付近で土石流が発生しているとみられる。源頭部付近は周氷河性堆積物が分布するケースが多い。 土石流が流下した区間は川幅が10-20倍程度に拡がっている箇所がみられ、渓岸侵食により土石流の土砂量が増大したと見受けられる。 流下してきた2.5m以下程度の礫が1号砂防堰堤で捕捉されたほか、狭窄部の上流で堆積している。
- 【中流】1号堰堤付近より下流は扇状地にあたり、2号砂防堰堤では細粒土砂の捕捉がみられ、その下流の床固工区間は顕著な渓岸侵食等は見あたらない。
- 【下流】河川区間は2°~1°程度の河床勾配であり、渓岸侵食が顕著なほか、この区間は水面と扇状地面との比高差が小さく氾濫がみられる。



 ■1号砂防堰堤上流の基岩は主として深成岩(花崗岩)で、周氷河性堆積物(崖錐堆積物,写真①)が基岩を覆って分布している。
 ■中下流は扇状地堆積物が分布しているが、狭窄部では河床に泥岩が露岩している(写真③)。
 ■砂防堰堤の上流側では土砂が堆積しており、渓流保全工区間では著しい渓岸の侵食はほとんど発生していない。
 ■本川・支川1・支川2では土石流が発生し(写真②)、縦侵食が卓越しているが、本川と支川1の合流点より下流では、土砂堆積と低い段 丘地形の侵食、渓岸崩壊・渓岸侵食が顕著で、渓畔林の流出が多くみられる(写真④)。
 ■1号砂防堰堤の下流の狭窄部までは土石流、それより下流は掃流の土砂移動形態である。

①厚さ5m以上の崖錐堆積物が侵食され. ③泥岩が露岩した狭窄部 ④渓岸侵食と土砂堆積 渓床に基岩の花崗岩が露岩している 掃流形態の土砂移動 土石流形態の土砂移動 横侵食 狭窄部 横侵食 清水町 1号砂防5 S41完成) 国道274号 土石流 堆砂 2111 ペケレベツ 旧日勝スキー場  $\otimes$ 旧日勝スキー場 約2.5km 土石流

(上流で停止)

34

②<br />
上流域の<br />
荒廃状況

■1号砂防堰堤を通過した土石流ピーク流量を、マニング式を用いて推定すると約480m<sup>3</sup>/sであった。 土石流の流下幅は、オルソ平面図から残存している樹木を考慮して、50mと推定した。 土石流の流下勾配は、痕跡高の勾配として推定し、1=1/20とした。 土石流流下時の河床高は、堆砂幅が土石流流下幅と等しくなる高さとした。 土石流の流動深は、土石流流下時の河床高と痕跡から推定した土石流の高さとの差として求め、2.5mとした。 ■土石流推定ピーク流量から、堰堤袖部への土石流流体力は約61kN/m、巨礫の衝撃力は約305kN/mと推定される。



#### 表. ピーク流量算出諸元

|         | 項目                                  | 值                     | 備考    |
|---------|-------------------------------------|-----------------------|-------|
| 流下幅     | В                                   | 50 m                  | 平均流下幅 |
| 流動深     | Н                                   | 2.5 m                 | 平均水深  |
| 勾配(1/n) |                                     | 0.05                  | 1/20  |
| 粗度係数    | n                                   | 0.1                   |       |
| 流積      | A=BH                                | 125 m <sup>2</sup>    |       |
| 潤辺      | S=B+2H                              | 55 m                  |       |
| 径深      | R=A/S                               | 2.27                  |       |
| 流速      | $V=1/n \cdot R^{2/3} \cdot I^{1/2}$ | 3.87 m/s              |       |
| 流量      | Q=AV                                | 483 m <sup>3</sup> /s |       |



■一の沢川と支川5は崩壊が少ないため、本川への土砂流出は見られない。 ■二の沢川の流出土砂量は178,800m<sup>3</sup>と多いが,発生した土石流は曲線区間等で停止したため,本川合流点で土石流扇状地等の形成 は見られない。本川へ流出した土砂は、本川の流量が大きいため下流へ流出している。 ■支川1,支川2から流出してきた土砂は、本川の流量が大きく、本川の勾配が急(1/11~1/9)なため、本川合流点で堆積をせずに 下流へ流出している。



▲支川5とペケレベツ川の合流点

▲支川2とペケレベツ川の合流点

■砂防計画基準点より下流約1km区間では、縦方向の侵食が著しく、最大約7mの河床低下が発生している(写真①、②)。 ■河川区間では、みお筋の移動や河岸侵食などの横侵食が卓越しており、河畔林の流出が多くみられる(写真③、④、⑤)。



A thick-steller, elevonetic steller, elevoneti

▲ 清見橋(国道38号)取付道路流出

▲ 乱流・河床洗掘により被災した河道

 ■河床の平衡勾配の考え方に基づくと、出水前の河床は水深1.2m以上で侵食が発生すると推定された。出水時の侵食により河床の粒径が 30cmから5cmと小さくなったため、出水後は水深0.4m以上で侵食すると推定された。
 ■出水時に水深1.2m程度に達したときに侵食が発生し、池田層に侵食が及んだ。その後水深0.3m程度まで水位が低下したときに侵食が停止し、現在に至る。



平成28年9月1日撮影

平成28年9月23日撮影



#### 平衡勾配による侵食する水深の推定

河床の平衡勾配は次の式により,河床 の限界掃流力を流水の掃流力が上回った ときに侵食が発生するものとした。

掃流力 U\*2 = g · H · I 限界掃流力 U\*C2= 0.809 · d

| U : 掃流力 (m2/sec2)                           |                 |
|---------------------------------------------|-----------------|
| I:渓床勾配                                      |                 |
| H : 水深 (m)                                  |                 |
| g : 重力の加速度 9.8<br>d : 代表的な粒径<br>m : 側岸勾配0.5 | (m/sec2)<br>(m) |



侵食する水深0.4m以上

※河床侵食により河床礫の下位の地層が露出しており、出 水後については平衡勾配による水深に誤差が含まれる。

38

■昭和22年~23年の微地形判読から、上流は概ね河道が固定されており、扇状地区間で段丘崖が広がり河道跡と思われる箇所が確認され る。 ■平成28年は渓流保全工により流路が固定され、段丘崖の範囲で氾濫等が発生することは防がれている。



■昭和22年~23年の微地形判読から、扇状地区間の左岸側に河道跡や低位段丘崖と思われる箇所が多い。
 ■平成28年の氾濫範囲も左岸側であり、過去から同様な傾向で側岸侵食や氾濫が発生している可能性がある。



- ■【上流】3号砂防堰堤上流の源頭部付近で土石流が発生しているとみられる。源頭部付近は周氷河性堆積物が分布するケースが多い。3号砂防堰堤は堆砂敷きの河畔林が残っており土石流状態での流下が顕著でなかったとみられる。3号砂防堰堤直下で最大深度約10mの深掘れが700mにわたって発生しており相応の流水があったと見受けられる。
- 【中流】3号砂防堰堤付近より下流は扇状地にあたり、2°~1°程度の河床勾配であり、著しい渓岸侵食がみられる。渓流保全工区間は 水面と扇状地面の比高差が小さくところどころに氾濫がみられる。
- ■【下流】河川区間は渓岸侵食等が連続的にみられる。



■上流域は深成岩(花崗岩)を基岩として周氷河性堆積物が厚く堆積している(写真①)。中下流域は侵食に弱い古期扇状地堆積物の上部に2m程度の扇状地堆積物や河床礫が堆積している(写真②)。

■源頭部付近で発生した土石流は渓岸渓床を侵食しながら流下し、谷幅が広がる1号砂防堰堤下流付近から土砂の堆積による流路の蛇行と 側岸侵食が顕著になる(写真③)。

■扇状地では砂防設備により土砂の捕捉・調節効果があり、横侵食は抑制されるが、砂防堰堤下流側で縦侵食が発生している(写真④)。



■芽室川本川と直交する営林署の沢は、土石流が合流点へ流出し、本川の流路が右岸側に変動しているように見受けられるが、本川は流量が大きく、勾配が急(1/10)なため、本川の河道を閉塞するには至らなかったと推察される。
 ■この他の支沢は、崩壊が少ない等により本川へ土石流の到達が確認されていない。



▲直交合流箇所位置図

▲営林署の沢と芽室川合流点付近 43

 ■河床の平衡勾配の考え方に基づくと、出水前の河床は水深0.3m以上で侵食が発生すると推定された。出水時の侵食により河床勾配は 1/26から1/40と緩くなったが、河床の粒径が12cm(写真3)から8cm(写真4、5)と小さくなったため、出水後も水深0.3m以上で 侵食すると推定された。
 ■出水時に水深0.3m程度に達したときに侵食が発生し、古期扇状地堆積物に侵食が及んだ。その後水深0.3m程度まで水位が低下したとき に侵食が停止し、現在に至る。



■床固工などがなくなる砂防計画基準点下流では河床低下傾向にある(写真①)。
 ■下流域では蛇行による河岸侵食や低位段丘崖を越える氾濫が生じている(写真②③)。+勝川合流点では若干の土砂の堆積が見られる(写真④)。



④十勝川合流点の状況

③市街地への氾濫

②流路外湾部の渓岸侵食





①砂防計画基準点下流の河床低下