

破堤氾濫流量の軽減技術に関する検討

-破堤開口部の締切に関する模型実験

-河道条件と破堤現象に関する模型実験および数値計算

国土交通省 北海道開発局 (国研)土木研究所 寒地土木研究所

-破堤開口部の締切に関する模型実験

1. 荒締切に関する現状と課題

1. 締切工の現状と課題(昨年度のADV委員会資料より)

【現状】

近年も全国の河川で破堤被害が生じているが、破堤時の緊急的な締切工事は事例が少なく、 締切工の効果的な施工方法は確立されていない.

【課題】

災害時に破堤部周辺の流れを観測した事例は少なく、実際に生じた水理量に基づく詳細な 検討が困難である.また最後の締切箇所である「せめ部」は、高流速や深掘れの発生により現場作業が困難であり作業手順などの確立が必要である.

決壊口の両側を石俵で補強 (S34伊勢湾台風) 昭55.7.20 決壊部の復旧作業

せめ部にH鋼 (S55淀川大堰緊急締切)

ブロック投入 (S61小貝川災害)

閉塞前の激しい流れ (H14千代田新水路復旧)

2. 模型実験

2. 実験目的(昨年度のADV委員会資料に加筆修正)

実験の目的 荒締切により氾濫流量を軽減し、減災につなげるための基礎的な知見を得る

技術的課題

① 荒締切により破堤開口部が狭まるにつれて生じる現象の理解
 ② 効率的かつ効果的な荒締切の手順の検証

実験の内容

① 越水から破堤、破堤拡幅抑制、荒締切、せめ工までの一連で模型実験を行い現象を理解
 ② 荒締切を複数の方法(手順)で行い、締切作業効率・氾濫流量低減効果を検証

H28は荒締切方法を1ケース追加して実施 ⇒H27は荒締切を進めるにつれ、開口部の河床低下が顕著となった 先行して開口部河床全体にブロックを投入し、 河床低下を抑制した上で荒締切を進める

2. 実験概要

平面図

トラスフット2t型

堤防からの越水

破堤拡幅抑制まで

荒締切ケースイメージ

タワー上空より撮影

2. 実験結果(ケース3の状況)

氾濫域上流より撮影

2. 実験結果(開口部形状)

締切に伴う破堤開口部の形状変化

事前に開口部全体にブロック投入することにより、開口部河床低下の抑制効果は見られた

2. 実験結果(開口幅と氾濫流量)

ケース1

半分程度締切ると氾濫流量は3割弱の低減 所要時間は破堤開始から24時間程度 投入は3分に1個×下流1箇所=1個/3分

ケース2

半分程度締切ると氾濫流量は3割弱の低減 所要時間は破堤開始から7時間程度 投入は3分に2個×上下流2箇所=4個/3分

ケース3

開口部河床全体にブロックを敷設した上で、 半分程度締切ると氾濫流量は3割強の低減 所要時間は破堤開始から15時間程度 投入は3分に1個×1箇所=1個/3分(200個まで) 投入は3分に2個×上下流2箇所=4個/3分(201個以降) プロック個数-氾濫流量

・投入開始時点の氾濫流量は異なるが、投入方法・位置などに 関わらず、概ね投入個数に応じて氾濫流量低減

・ブロックの投入速度が氾濫流量軽減に直結

まとめ

・先行して開口部河床全面にブロックを投入することで開口部の河床低下は抑制
 ・しかしその他の手法と比較して、ブロック投入個数に応じた氾濫流量の低減には明確な
 差が生じなかった

・ブロック投入数に応じて氾濫流量が低減

・如何に早く効率的にブロックを投入できるかが重要

これまで千代田実験水路を中心とした一定の河道条件で破堤現象の理解から、その対策
 に至る検討を実施

河床勾配、川幅など河道の状況に応じた現象を理解することで、これまでの取り組みの適用性の検討などを行う必要がある。

-河道条件と破堤現象に関する模型実験および数値計算

資料概要

千代田実験水路を用いた実験より破堤現象のメカニズムの検討 実物大規模のメリットを活かし様々な知見を得てきている (破堤進行過程、崩壊量と水理量、破堤数値計算モデル等)

現在は得られた知見をもとに減災工法について検討中 (H24より破堤拡幅抑制工、H27より破堤開口部締切工)

千代田現地実験は一定の河道条件 (川幅B=8m、河床勾配Ib=1/500、通水流量Q_{in}=70m³/s)

今後、これまでに得られた知見を現場で活用するには、それらと 多様な条件の河道における現象との関係を整理・理解しておくこと が重要

本資料では川幅と河床勾配の相違が破堤拡幅現象に与える影響について整理を行ったものである

本資料の構成は以下に示すとおり

- 1. 実災害時の破堤形態事例(P.14~)
- 2. 縮尺模型実験による検討(P.17~)
- 3. 数値計算による検討(P.25~)

千代田実験水路での様々な実験

1. 実災害時の破堤形態事例

河道特性に応じた破堤現象の特徴一例①

急勾配河川の破堤事例(下流進捗)

下流への拡幅進行が卓越、背割堤破堤実験に近い現象と推察

千代田実験水路での破堤実験(背割堤) (上:通水時、中:PIV観測、下:通水後)

H28.8 空知川の堤防決壊 (上 : 破堤部下流側、下 : 破堤部上流側)

緩勾配河川の破堤事例(中央集中)

上下流から開口部に流れ、開口部中央に速い流れ

に一部加筆している

S56.8 石狩川の堤防決壊 (左:全体、右:下流側破堤部の拡大)

小貝川高須地先(1)-昭和56年台風15号出水による-、災害復旧記録、社団法人関東建設弘済会、平成21年3月 15

河道特性に応じた破堤現象の特徴整理③

・千代田実験水路での破堤現象は水路幅が狭く勾配が急な条件
 ・破堤被害軽減技術の検討には、実河川を想定した河道形状での破堤現象把握が重要
 (※勾配はHWL勾配)

2. 縮尺模型実験による検討

模型実験概要と実験ケース

【水路】 つくばにある千代田実験水路の縮尺模型実験水路を用いた実験(縮尺1/20)

模型実験結果(流況·通水後形状)

模型実験結果(時系列)

・川幅が広い場合、河道水位は低下しづらくなり、破堤開口幅や氾濫流量は大きくなる。

・河床勾配を緩くした場合、開口幅は拡がりづらい。一方で、開口部下流側の堤体周辺に局所洗掘が生じる。

(参考)破堤に伴う河道内水位の低下を抑制する実験概要

実験概要

前述の緩勾配破堤実験ケース3 (川幅B=30m・河床勾配lb=1/5000・Q_{in}=100m³/s) 破堤初期段階では正面越流に近い形態であったが、破堤進行とともに 河道内水位が低下し、途中から下流への破堤拡幅が卓越

川幅が十分広く、破堤により河道内水位が下がらない条件を再現するために、水路下流端に注水し、水位を保持する条件で実験を実施。

タワー上空より撮影

実験状況

河道上流より撮影

通水後(通水停止指示 14:21:10)

205 秒後(現地換算 15.3 分後) 13:44:50

23

実験結果

- ・破堤拡幅初期段階では拡幅速度に差はない
 ・最終破堤幅は今回の下流流量供給条件の方が拡がりづらかった
- ・一方で開口部の局所洗掘深は堤防高の2倍程度

【実験後地形】

前述の実験(ケース3)

3. 数値計算による検討

計算モデルの概要と再現性検証 様々な河道形状での検証

(参考) 破堤計算モデルNays2D Breachの概要

【破堤モデル概要】

基本となるモデルは2次元浅水流河床変動計算 iRIC Nays2D¹⁾ 堤防部分の破堤拡幅進行は、千代田実験水路での 破堤実験結果より得られた無次元掃流力と堤体崩 壊量の以下の関係式を組み入れてモデル改良²⁾

$$q_* = \frac{dV}{dt} \frac{1}{(\sqrt{sgd_{50}^3} \cdot B_m)} (1 - \lambda) = \alpha_* (\tau_* - \tau_{*c})^{\beta_*}$$

ここで、 q_{\star} :無次元堤体崩壊量、V:堤体崩壊量、t:時間、s:砂粒の水中比 重、g:重力加速度、 d_{50} :砂粒の50%通過粒径、 B_m :堤体下幅、 λ :空隙 率、 τ_{\star} :無次元掃流力、 τ_{\star} :無次元限界掃流力、 α_{\star} · β_{\star} :係数

1) iRIC,, http://i-ric.org/ja/

2) 柿沼, 飛田ら: 千代田破堤実験と数値計算モデル開発, 寒地土木研究所月報, No732, 2014年5月

破堤計算モデルの再現性検証(千代田現地破堤実験)

- ⑦ 河道から開口部への流れ
- ⑦ 開口部から氾濫域への斜めに速い流れ また堤体裏法尻部は斜めに侵食
- の 一方で流れは表法部から河道へ
- ① 開口部上流などは低流速⑦のような主流の存在

⑦ 破堤拡幅に伴う河道の急激な水位低下、氾 濫域の水位上昇など概ね再現

【実験後地形】 _{実験結果(レーザー測量)}

計算結果

- ⑦ 河道部の河床低下
- ⑦ 開口部下流の斜め形状の堤体侵食
 開口部から氾濫域への河床洗掘
 及び周辺の堆積
- 流況、破堤進行過程、実験後の 形状など概ね現象を再現

破堤計算モデルの再現性検証(つくば縮尺模型実験)

【時系列】

以上より千代田現地実験をもとに開発した数値計算モデルは、 千代田実験水路での現地破堤実験だけでなく、河道条件(川 幅・河床勾配)を変えた場合でも破堤現象の傾向を表現できる ことを確認

3. 数値計算による検討

計算モデルの概要と再現性検証 様々な河道形状での検証

河道特性の選定と計算条件

河道特性の選定と計算条件

河道条件毎の 通水流量Q_{in}

河床勾配lb フルード数Fr	川幅B		
	B=30m	B=120m	B=480m
1/500(0.72)	340m3/s	1255m3/s	4919m3/s
1/1000(0.49)	240m3/s	887m3/s	3479m3/s
1/4000(0.25)	120m3/s	444m3/s	1739m3/s

河道形状に応じた破堤現象特性(四隅抜粋)~現象の比較

河道状況に応じた破堤現象に関する整理(案)

破堤抑制工、締切に使用するブロックに関する検討

国土交通省 北海道開発局 (国研)土木研究所 寒地土木研究所

抑制工,締切に使用するブロックに関する検討:背景

決壊ロへのブロック投入は早い流速,水位差,投入の 影響により,一様流の中に静置することを前提とされた 移動限界流速と比べ,転動しやすい.

→水位差等外力の影響を定量的に評価する必要がある.

ブロックは数10m流出

出典) 国土交通省関東地方整備局京浜河川事務所ホームページより http://www.keihin.ktr.mlit.go.jp/tama/02miryoku/tama_midokoro/property/10_4.htm

抑制工,締切に使用するブロックに関する検討:背景

移動床中に投入されたブロックは、ブロック下部の河床変動によって沈下する.結果として、締め切りに必要なブロック数が増加する.

北海道河川財団資料

ブロック下部の河床変動による沈下.

現地締め切り実験では、2m程度ブロックが 沈下(ブロック高さ1.2m程度)し、必要ブ ロック数が増加する、締め切りに時間がか かる.

→沈下メカニズムを把握し, 沈下しづらく効率的に締め切れるブロックの提案.

平成27年度締め切り実験

目的

抑制工、締め切り等に効果的な、動きづらく、沈下しづらいブロックについて検討

- 1. 水面からの投入や水位差が、ブロックの移動限界に与える影響の把握.
- 2. 水位差がブロックに作用する流体カヘ与える影響を実験的に定量化し、水位差 を考慮したブロックの移動限界基準を提案.
- 3. 移動床上に置かれたブロックの沈下原因について明らかにする.
- 4. 流出しづらく、かつ沈下せずに積み上げられるブロックの投入方法、順番等について検討する.

トラスフット

平型ブロック

袋詰め根固め

水路実験: ブロック移動限界に対する投入,水位差の影響

- 寒地土木研究所 高速循環水路 (平坦床,水路幅1m)
- 底面:静止実験,投入実験は粗度付け.抗力測定時は鋼板.
- 水路急縮により水位差を発生させる.
- 千代田実験水路を想定した1/10縮尺模型

ブロック移動限界実験: 底面静止状態

- 底面にブロックを設置した状態から流量を段階的に増加させる.
- ブロックが移動を開始した時点の流量で複数回の試行を行い、移動開始条件を判定.
- 移動開始流量,並びにその前後の流量時の流速を測定.

トラスフット横置き時の実験

移動時

静止時

ブロック移動限界実験:水面から投入状態

- 静止実験と同様に段階的に流量を増加させる.
- 水面直上からブロックを投入し、底面到達後のブロック移動の有無から、投入した際の 移動限界条件を判定.

トラスフット縦方向の実験

底面到達後, 停止

底面到達後, 転動

ブロック移動限界実験:水位差がある状態

- 水路を急縮させることで水位差を発生させる.
- 水位差が急となる断面の底面にブロックを設置し,静止実験と同様に段階的に流量を 増加させ,水位差がある場合の移動限界条件を判定.
- 移動限界状態における流速分布と水位差を測定.

トラスフット縦方向の実験

ブロックの移動限界:投入の影響

- 水面から投下されたブロックは、底面に静止状態
 で置かれたブロックが移動を開始する流速よりも
 遅い流速で流出する。
- 投入によって移動限界流速が低下する現象は移動床より固定床のほうが顕著な傾向。
- ブロック形状,移動床・固定床によらず,投入に よってブロックの移動限界流速は低下する傾向 が示された.

※ フルード相似による現地換算流速.※ ブロックがない状態におけるブロック天端高さの流速を指標としている.

投入による移動限界低下現象

〇落下時の姿勢

トラスフットが転動する際は、落下時の姿勢によっては、転動、停止に作用する初期モーメントが出る 場合があり、それにより転動特性が異なる.

> トラスフット横方向投入実験 投入時の転動限界条件以上の流速

〇ブロック向きの変化

トラスフット縦方向の実験では、落下時の移動に よって向きが変化し、最終的に移動しやすい横向き に変化し、流されやすくなる.

トラスフット縦方向投入実験

形状に方向性があるブロックでは,移動限界が大きい方向で投入しても,結局流されやすい方向に姿勢を変えてしまう可能性.

→形状の方向性が少ないブロックのほうが, 投入後 の移動の有無を判断しやすい.

投入による移動限界低下現象

〇落下後の滑動, 転動運動の影響

- ブロックは底面到達時には初速度を持ち,流体力と抵抗力を受けながら底面を運動する.
- ある程度の距離を流下した後に停止した場合でも、締切を行う実用上は移動したと等価.

ブロックの移動限界:水位差の影響

- 水位差があることにより、より遅い流速でもトラス フットは移動を開始する。
- ブロック前後断面に水位差が存在する場合は、
 底面静止状態から移動を開始する流速よりも遅い流速で移動する可能性がある。

※ フルード相似による現地換算流速.

※ ブロックがない状態におけるブロック天端高さの 流速を指標としている.

水位差が物体抗力に与える影響

 ・ 同程度のレイノルズ数の範囲でも、水位差有りのほうがC_D
 が大きい。

⇒水位差による抗力の増加

:測定された抗力 :ブロック近傍流速 :流体の密度 :抗力係数 :抗力作用面積 :ブロック高さ :動粘性係数

U

 ho_w

 C_D

 A_D

D

v

水位差がブロック転動限界に及ぼす影響

- 護岸の力学的設計法におけるブロック移動限界の考え方に水位差の影響を考慮する.
- ブロックに作用する力の釣り合いから転動限界条件を導く.
- ここでは、移動状態を滑動とし、抵抗力をブロックー底面間の摩擦力、作用外力を抗力 とブロック前後の水位差により生じる静水圧の差を考える。

水位差がブロック転動限界に及ぼす影響

ブロックが不動である条件は、 $F_f > F_D + F_P$ であるから、

$$\mu(\rho_b - \rho_w)gV > \frac{1}{2}\rho_w C_D A_D U^2 + \rho_w g A_p \Delta H$$

ブロックの代表長さを Lとして,以下の関係を導入する.

$$V = \alpha_V L^3$$
, $A_D = \alpha_D L^2$, $A_p = \alpha_P L^2$, $\Delta H = -L \frac{dH}{dx}$

各係数は、実際の体積、面積を代表長さで表すための係数、この関係より、

$$\mu(\rho_b - \rho_w)g\alpha_V L^3 > \frac{1}{2}\rho_w C_D \alpha_D L^2 U^2 - \rho_w g L^3 \alpha_p \frac{dH}{dx}$$

式を整理して,

$$\mu \frac{\rho_b - \rho_w}{\rho_w} g \alpha_v L > \frac{1}{2} C_D \alpha_D U^2 \left(1 - \frac{2}{C_D} \frac{\alpha_p}{\alpha_D} \frac{gL}{U^2} \frac{dH}{dx} \right)$$

$$\frac{gL}{U^2} = \frac{gh}{U^2} \frac{L}{h} = \frac{1}{F_r^2 k_h} \qquad \qquad k_h = \frac{h}{L} \quad \mathbf{水深} - \mathbf{\overline{\textit{J}}} \mathbf{\nabla}\mathbf{\overline{\textit{J}}}$$

水位差がブロック転動限界に及ぼす影響

長さスケール*L*を消去するために、両辺を3乗して、 $W = \rho_b g a_V L^3$ の関係を使えば、

$$W > \frac{1}{8} \frac{C_{D}^{3} \alpha_{D}^{3}}{\alpha_{V}^{2} \mu^{3}} \left(\frac{\rho_{w}}{\rho_{b} - \rho_{w}}\right)^{3} \frac{\rho_{b}}{g^{2}} U^{6} \left(1 - \frac{2}{C_{D} k_{h} F_{r}^{2}} \frac{\alpha_{p}}{\alpha_{D}} \frac{dH}{dx}\right)^{3}$$

従来の式に相当する項

- フルード数が小さく、水深に比してブロック 代表長さが大きい場合、従来考慮している 流速による影響に対して相対的に水位差 の影響が顕著になる。
- 投入の影響を考慮すれば、移動開始流速 はより低下すると考えられる。

Fr=0.76, k_h=1.75, dH/dx= -0.27

水位差がある場 合の補正項

ブロック投入可能範囲

ブロック投入判定は流速だけでは行えないと考えられる.

ブロック移動条件 ≠ f(流速) = f(流速,水面勾配,投入,...)

U (m/s) 5.00 4.00 3.00 2.00 1.00 0.000

 移動判定条件を実験より 提案し、数値計算(Nays2D Breach),現地観測結果から、移動係数を計算.

せる対策が必要

 ブロック移動メカニズムの 把握や投入可能位置の判 断の目安に使用.

ブロック沈下実験

- 寒地土木研究所 高速循環水路 (平坦床,水路幅1m)
- 河床材料粒径, 1.2mm 断面平均流速, 0.68m/s程度
- 千代田実験水路を想定した1/10縮尺模型
- トラスフット(縦置き,横置き),平型ブロック,袋詰め根固めを底面に置き,ブロックの沈 下過程,ブロック周辺の洗掘特性を把握する.

トラスフット横置きの場合

ブロック沈下実験

ブロック	洗掘量 (cm)	ブロック 高さ (cm)
トラスフット 横	7	11.4
トラスフット 縦	6.6	11.4
平型 ブロック	5.6	5.5
袋詰め 根固め	5.4	4

洗掘量(沈下量)は, ブロック高さの半分~1.5倍程度.

トラスフット縦置き

袋詰め根固め

締め切り実験

- 国土技術政策総合研究所 共同水理実験棟 可傾斜水路
- H27千代田実験水路締め切り実験の1/20縮尺を想定
- 水路幅 0.5m, 勾配 1/500, 粒径 0.5mm
- ブロックを40秒間隔で投入(現地換算で3分間隔)

トラスフット 平型ブロック 袋詰め根固め
 ブロック投入順序を変更して締め切り効果を検討

 1段目 2段目以降
 トラスフット → トラスフット
 平型ブロック → トラスフット
 袋詰め根固め → トラスフット

※袋詰め根固めの構成材料は最大粒径が19mm, 現地換算 で38cm程度のものを使用

締め切り実験

- 締め切り初期では、トラスフットでは、脚の間に生じる局所流で土砂が動き、沈下しやすい、平ブロックや袋詰め根固めにおいても同様に沈下するが、沈下量としては小さい。
- 締め切りが進むと、上流側の水位が上昇することで、ブロック域には急な水面勾配がつき、ブロックの下からより土砂が抜け出しやすくなる。
- ・ また、水位上昇により上流側の流砂量が減 少する.
- 結果として、トラスフットのみの場合、平ブロックを使った場合の最終的な洗掘深さは同程度であった。
- 一方,袋詰め根固めを使った場合,河床の 洗掘とともに袋詰め根固めも変形するため に,砂の抜けだしを防ぎ,最終的な洗掘深 は最も小さく,上流側の水位が高くなった.

白破線:初期河床 黄破線:初期水位

締め切り実験

平成28年8月17日からの大雨による緊急復旧工事について

北海道開発局

Ministry of Land, Infrastructure, Transport and Tourism

緊急復旧工事(堤防決壊箇所における緊急復旧工事(台風第7、11、9、10号関連)

・堤防が決壊した常呂川水系柴山沢川、石狩川水系空知川、十勝川水系札内川、音更川の6箇所で緊急復旧工事を実施し、全て完了。

札内川KP25.0左岸(L=200m)およびKP40.5左岸(L=200m)の堤防が決壊 KP25.0左岸は8月31日に緊急復旧工事に着手し、9月7日に完了、KP40.5左岸は9月1日に緊急復旧工事に着手し、9月7日に完了 国土交通省

■常呂川支流の柴山沢川の一部区間で堤防が決壊し、常呂川本川の堤防との間の約40ha が浸水した。

柴山沢川決壊状況

常名川支川柴山沢川の被災箇所

■治水地形分類図によると柴山沢川は扇状地に分類される。
 ■柴山沢川の堤防は昭和38~39年に整備され、その後平成11年度に腹付け盛土(かさ上げ含む)を整備している。

8月22日 9:30 緊急復旧工事着手。 8月26日 12:00 緊急復旧工事完了。

工事状況(24時間体制による緊急復旧)

メネッ 美瑛川支川辺別川KP6付近左岸(美瑛町北瑛地区)の緊急復旧工事

8月23日(火)19:40 緊急復旧工事着手。 8月29日(月)15:00 緊急復旧工事完了。

工事状況(24時間体制による緊急復旧)

べべつ

美瑛川支川辺別川KP7.2付近右岸(旭川市西神楽1線26号地先)の緊急復旧工事

8月24日(水)16:40 緊急復旧工事着手。 8月30日(火)12:30 緊急復旧工事完了。

工事状況(24時間体制による緊急復旧)

🔮 国土交通省

空知川左岸幾寅築堤 緊急復旧工事実施内容

空知川左岸幾寅築堤 緊急復旧工事概要(工事着工前)

石狩川水系 空知川

石狩川水系 空知川

空知川左岸幾寅築堤 緊急復旧工事実施状況

国土交通省

空知川左岸幾寅築堤 被災概要(上流決壞箇所)

・大勝橋下流左岸で約300mにわたり決壊 した。氾濫流は農地部に広く拡散し、南 富良野町市街地に向かい流下した。

・出水後の氾濫原には、流路の跡とともに、 大量の流木が散乱していた。

■音更川KP21.2左岸で河岸侵食が発生し、約230mにわたり決壊した。
 ■決壊前の流路は堤防に対して十分な距離(約120m)があったが、出水により蛇行部が堤防まで到達した。

決壊前の状況

決壊箇所の状況

音更川(KP21.2左岸付近) 緊急復旧工事

8月31日(水)19:00緊急復旧工事着手。 9月 5日(月)17:00緊急復旧工事完了。

工事状況(24時間体制による緊急復旧)

■札内川KP25.0左岸では約200mにわたり堤防が決壊した。戸蔦別川からの氾濫流は、決壊箇所から堤外へ流下した。
■家屋や倉庫、民間発電事業者のソーラー発電施設が被災した。

■戸蔦別川決壊前には、内水による浸水があり帯広市により内水排除作業が行われていた。

決壊箇所の状況

氾濫流の流下による堤内側の洗掘状況

戸蔦別樋門 被災状況

14

札内川の被災状況(KP40.5左岸)

■札内川KP40.5左岸で河岸侵食が発生し、約130mにわたり決壊した。
■もともと左岸寄りに流路が形成されていたが、出水により蛇行部が堤防まで到達した。

決壊前の状況

決壊箇所の状況

決壊箇所の状況(拡大)

札内川(KP25.0左岸付近) 緊急復旧工事

8月31日(水)14:30緊急復旧工事着手。 9月 7日(水)24:00緊急復旧工事完了。

工事状況(24時間体制による緊急復旧)

札内川(KP40.5左岸付近) 緊急復旧工事

9月1日(木)17:00緊急復旧工事着手。 9月7日(水)24:00緊急復旧工事完了。

工事状況(24時間体制による緊急復旧)

2017/03/27 平成28年度 第11回十勝川千代田実験水路等アドバイザー委員会

資料4

平成29年度の取組について

国土交通省 北海道開発局 (国研)土木研究所 寒地土木研究所

抑制工の施工条件

ブロックの据え付け状況

<u>作業工程</u> ・玉掛け ・吊り上げ ・据え付け ・玉外し

H28常呂川での対応

H28音更川での対応

ブロックの投入時間の短縮等について

抑制工の効果的な施工のためには施工速度の向上が必要

ブロック投入時の所要時間検討

その他既存重機を使ったブロックの施工法の例(H24北陸地整)

平成29年度の実証実験

バックホウ等を用いた効果的な施工方法の検証

【試行機材(例)】 バックホウ吊り上げ バックホウ+掴み機 不整地運搬車(クローラー、荷台運転席回転) など