『小樽開発建設部 i-Construction 推進連絡会議(TI4)』 第1回現場研修&勉強会

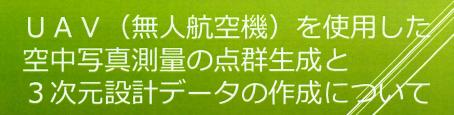
~ プログラム ~

日 時 : 平成30年11月6日(火曜日)

場 所 : 13:00~14:20 (現場での実務講習)

余市郡余市町登町地先(一般国道5号 共和町 稲穂改良外一連工事〈登川工区〉)

15:30~17:15 (座学による講習)


小樽開発建設部 第1会議室

主 催 : 北海道開発局 小樽開発建設部

時 間	内容
13:00~	1. 開 催 挨 拶
(5分)	小樽開発建設部 特定道路事業対策官 蛯澤 秀則
13:05~	2. 稲穂改良工事(ICT活用工事)の現場状況
(75分)	∼ⅠCT建機の仕組み及び稼働状況~
	阿部建設株式会社 現場代理人 川元 雅之
	3.「コマツ」による最新技術の紹介 (20分)
	コマツカスタマーサポート株式会社 北海道カンパニー
	札幌北支店長 新木 悟
	グループマネージャ 工藤 正裕、池野 詩帆
	質 疑 応 答 (10分)
14:20~	 移 動 (稲穂改良工事現場~小樽開建 第1会議室)
(70分)	
15:30~	4. UAV (無人航空機) を使用した空中写真測量の点群生成と3
(100分)	次元設計データの作成について (45分)
	HRS株式会社 執行役員 大浦 宏照
	5. ICT活用工事の実践と考察 (40分)
	協成建設工業株式会社 工事部
	 CT管理課 係長 下澤 哲也
	質 疑 応 答 (10分)
17:10~	6. 閉 会 挨 拶
(5分)	小樽開発建設部 技術管理官 藤本 和伸

平成30年度「i-Construction推進連絡会議」第1回現場研修&勉強会 参加者名簿

No	所属	役 職	E	氏名	6日 (現場)	6日 (講習)	備考
1	後志総合振興局産業振興部農村振興調	検査専門員	小俣	芳春	0	0	
2	後志総合振興局産業振興部農村振興調	主事	永江	凌	0	0	
3	小樽建設管理部事業室地域調整課	課長	髙橋	浩暉	0	0	
4	小樽建設管理部事業室道路課	主査(舗装)	戸来	仁志	0	0	
5	技術管理官	技術管理官	藤本	和伸	×	0	
6	特定道路事業対策官	特定道路事業対策官	蛯澤	秀則	0	0	
7	施設整備課	専門官	坂口	勝利	0	0	
8	技術管理課	課長	寺井	一弘	0	0	
9	技術管理課	課長補佐	小野	英志	×	0	
10	技術管理課	専門官	宮川	浩幸	0	0	
11	技術検査官	技術検査官	若松	洋昭	×	0	
12	防災対策官	防災係長	吉田	智	×	0	
13	工務課	課長補佐	葛西	敏行	0	0	
14	工務課	上席専門官	花山	聡矢	0	0	
15	工務課	専門官	佐藤	秀人	0	0	
16	工務課	専門官	松田	伸吾	0	0	
17	農業開発課	課長補佐	高橋	直行	×	0	
18	農業開発課	上席専門官	福士	優	×	0	
19	岩内道路事務所 工務課	課長	川畑	光人	0	0	
20	岩内道路事務所 工務課	機電係長	前川	悟	0	0	
21	岩内道路事務所 計画課	 係員		健朗	0	0	
22	小樽道路事務所	 所長	本田	肇	0	0	
23	小樽道路事務所	副所長	増川	直実	0	0	
		第2工務課長	小井田		0	0	
25	小樽道路事務所	事業専門官	藤岡	康憲	0	0	
26	小樽道路事務所	第1工務係員	鳥越	悠加	0	0	
27	小樽道路事務所	第1工務係員	西坂	佳航	0	0	
			[J	21	27	

HRS株式会社

1

- ▶UAVを用いるメリットとは?
- ▶撮影から図化までの流れ
- ▶撮影の様子
- ▶作業計画の立て方
- ▶標定点の設置
- ▶撮影の際の注意
- ▶3次元復元計算(モデル構築)の方法
- > 点群編集

今日の話題

2

▶ 航空法によると・・・

飛行機、回転翼航空機、滑空機、飛行船であって構造上人が乗ることができないもののうち、遠隔操作又は自動操縦により飛行させることができるもの(200g未満の重量 (機体本体の重量とバッテリーの重量の合計)のものを除く)

を無人航空機と呼びます。

ごく小さなものは法規制の対象になりません

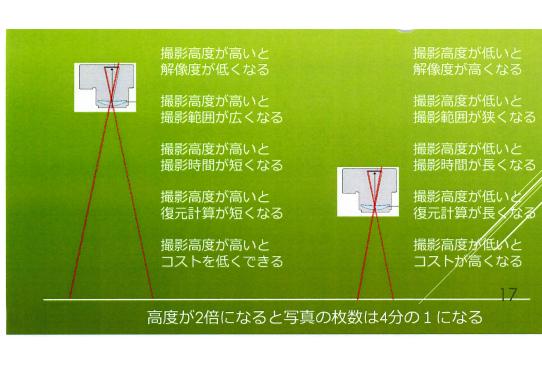
危険性が低いから

UAVって何だ?

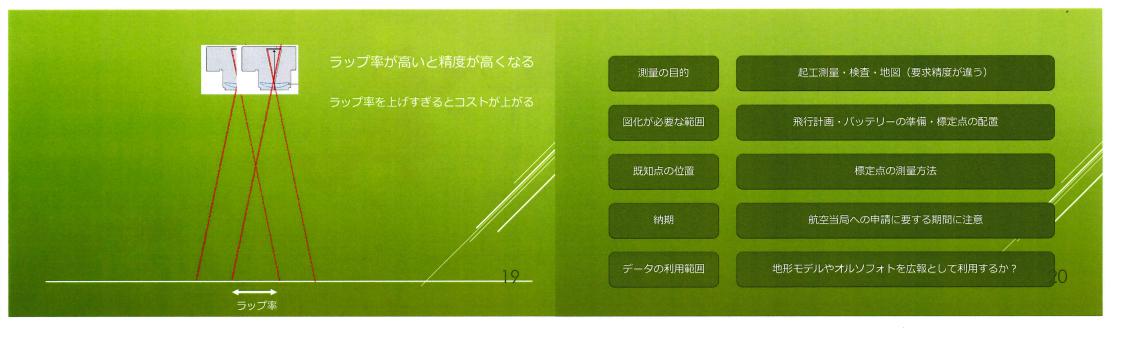
価格:数億円 飛行時間:数十時間 ペイロード:数十kg 操縦難易度:パイロットレベル

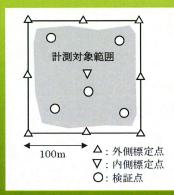
民生用も売りに出ている

価格:数百〜1千万円 飛行時間:1時間弱 ペイロード:数kg 操縦難易度:相当難しい


数年前までは、これが主流

UAVのいろいろ


4



外側標定点

- ・計測対象範囲を囲むように配置
- ・隣り合う外側標定点の距離は 100m 以内

内側標定点

- ・内側標定点は最低1点とする。
- ・内側標定点とそれを囲む標定点との距離は 200m 以内 検託点
- ・標定点の総数の半数以上(端数は繰り上げ)
- 計測対象範囲内に均等に配置

標定点の設置

これ以外に、地形の大きく変わる地点などに標定点を設置する

- ▶ 降雨時は撮影できない(UAVは防水仕様ではない)
- ▶ 強風時は撮影できない (風速5m程度が限界)
- ▶ 低温時はバッテリーの消耗が激しい(飛ばす前に温める)
- ➤ 不要なものは撮影範囲に入れない(点群編集作業が増える)
- ▶ 金網のついている斜面は、金網の表面しか取れない
- ▶ 積雪時には撮影できない(コントラストがなくて、対応点が取れない)
- ▶ 極端な晴天時には撮影できないことがある(コントラストがない、影が黒くなる)
- ▶ 飛行範囲の下に、人を入れない(安全管理・点群編集作業が増える)
- ▶ 保険に入っていることを確認する(建設業向けの保険は対象外の場合あり)
- ▶ 安全管理手順を守る

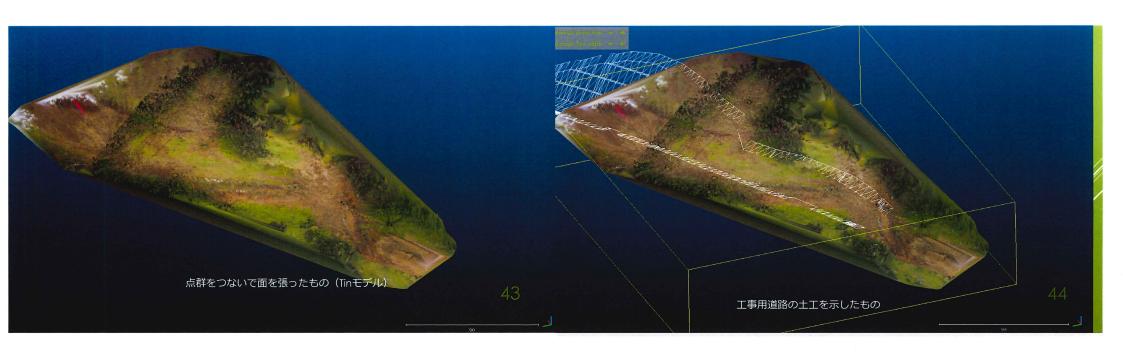
撮影の際の注意点

気温が低いとバッテリーが劣化

残量80%でも電圧不足の場合も

あらかじめバッテリーを温める

低温に関する注意


- ▶ 自動航行での撮影を推奨
- ▶ 周囲に第三者がいないことを確認
- ▶ 機体の定期点検の実施
- ▶点検記録の保持
- ▶ ファームウエアのアップデート
- ▶ 運行や整備の管理者を定める
- ▶ 現場では複数の人員で分業(班長・操縦者・撮影者・安全確認者・ など・・

3次元形状復元計算~データファイルの作成

専用のソフトを使って作業をします

カメラアラインメント (レンズのひずみの調整) テクスチャーモデルの作成 (表面に写真を張り付ける) (対応点を抽出し任意座標を与える) ポリゴンモデルの生成 点群の編集 座標計算 (基準点で座標を与える) (点群を線で結んで立体にする) (不要な点を削除) データ処理の大まかな流れ (ソフトによって若干違います)

ICT活用工事

C i-Construction

2. 定義

- (2)ICT活用工事とは、建設生産プロセスの下記段階において、ICTを全面的に活用する工事である。また、この一連の施工をICT活用施工という。対象は、土工を含む一般土木工事とする。
 - ① 3次元起工測量
 - ② 3次元設計データ作成
 - ③ ICT建設機械による施工
 - ④ 3次元出来形管理等の施工管理
 - ⑤ 3次元データの納品

基準・ガイドライン

基準・ガイドライン

C i-Construction

基準・ガイドライン

C i-Construction

基準・ガイドライン

C i-Construction

= ICT活用工事等に関連する要領等

ICT±I

- ▶空中写真測量 (無人航空機) を用いた出来形管理要領 (土工編) (案) (H30.3) [4]
- ▶空中写真測量(無人航空機)を用いた出来形の監督・検査要領(土工編)(案)(H30.3) 🛃
- ▶無人航空機の飛行に関する許可・承認の審査要領(航空局 H30.1.31一部改正) [3]
- ▶地上型レーザースキャナを用いた出来形管理要領(土工編) (案) (H30.3) 【
- ▶地上型レーザースキャナを用いた出来形の監督・検査要領(土工編) (案) (H30.3) 🖪
- ▶ TS・GNSSを用いた盛土の締固め管理要領(室) (H29.3) [4]
- ▶ TS・GNSSを用いた盛土の練園めの監督・検査要領(案) (H29.3) [▲
- ▶UAVを用いた公共測量マニュアル(案) (国土地理院 H29.3最終改正) [4]
- ▶公共測量におけるUAVの使用に関する安全基準(国土地理院) [3]
- ▶地上レーザースキャナを用いた公共測量マニュアル(案)(国土地理院)
- ▶TS等光波方式を出来形管理要額(土工編)(案)(H30.3) [3]
- ▶ TS等光波方式を出来形の監督・検査要領(土工編) (業) (H30.3) [3]
- ▶TS (ノンプリズム方式) を用いた出来形管理要領 (土工編) (案) (H30.3) [4]
- ▶TS (ノンプリズム方式) を用いた出来形の監督・検査要領 (土工編) (案) (H30.3) 【
- ▶ RTK-GNSSを用いた出来形管理要領(土工編) (案) (H29.3) [3]
- ▶ RTK-GNSSを用いた出来形の監督・検査要領(土工編) (案) (H29.3) [4]
- ▶無人航空機搭載型レーザースキャナーを用いた出来形管理要領 (案) (土工編) (H30.3) [4]

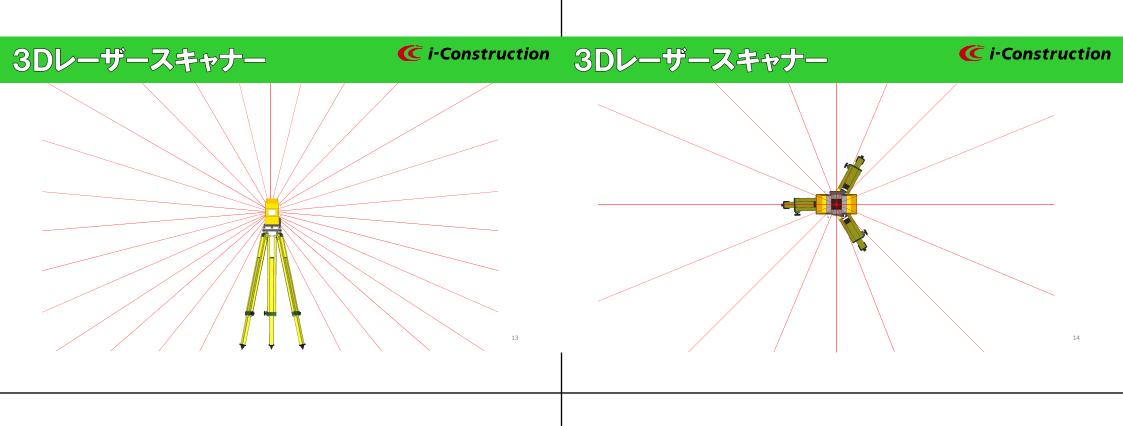
13次元起工測量

- ②8次元設計データ作成
- 31FT建設機械による施工
- **43%元出索形管理等の施工管理**
- **多**多次元データの納品

3Dレーザースキャナー

C i-Construction

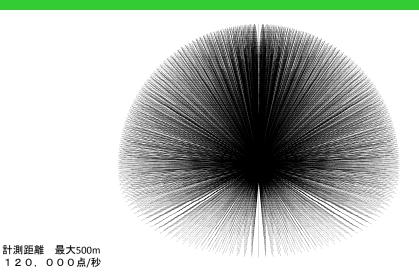
3Dレーザースキャナー



~を詳しく調べる

SCan ~を精査する

11



C i-Construction

3Dレーザースキャナー

C i-Construction

短時間

·最大 120,000点/秒

広範囲

・見えるもの全てがデータになる

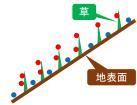
非接触

・対象物に接触すること無く安全に作業

起工測量

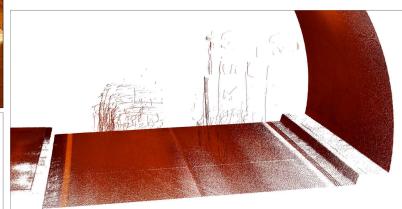
3Dレーザースキャナー TLS

データ処理

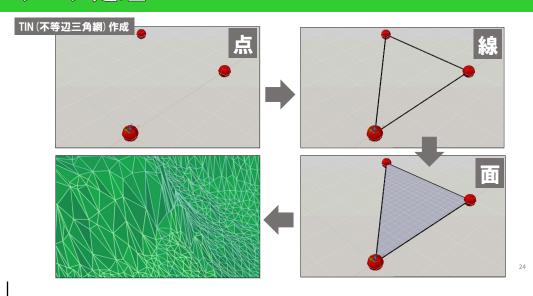


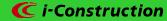
データ処理

データ処理


でi-Construction データ処理

C i-Construction


データ処理

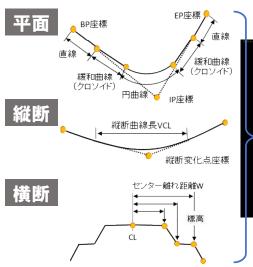

C i-Construction

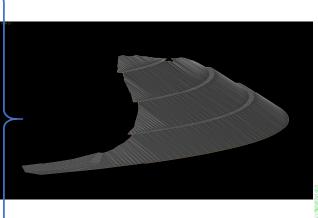
データ処理

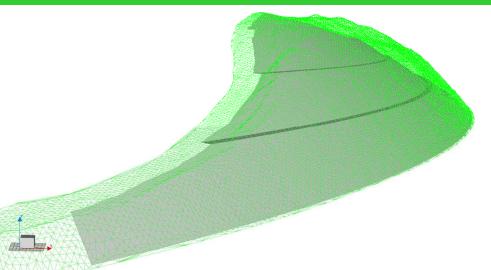
TIN変換

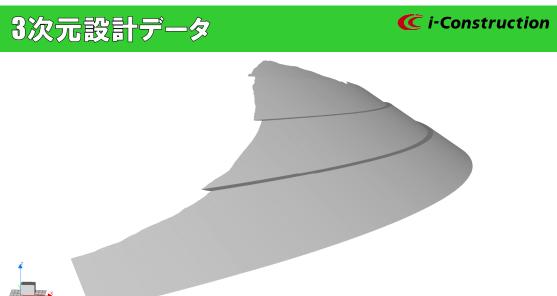
②3次元設計データ作成

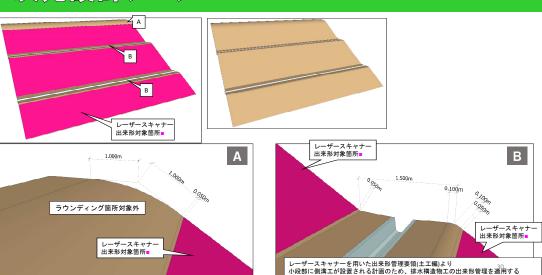
- 31FT建設機械による施工
- **のなえた出ま形管理等の施工管理**
- 53次元データの納品


26

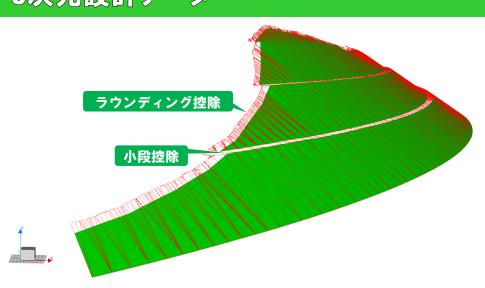

3次元設計データ

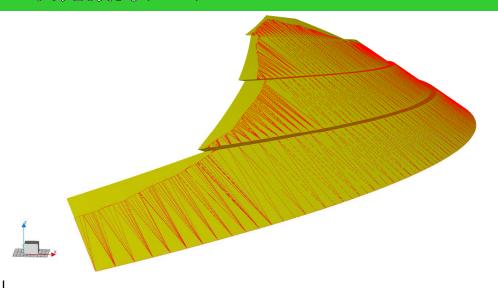

C i-Construction


3次元設計データ



3次元設計データ



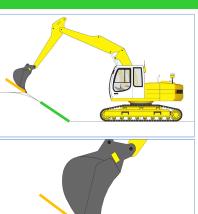

© i-Construction

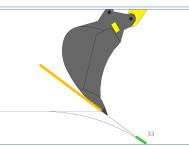
3次元設計データ

C i-Construction

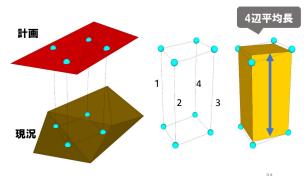
3

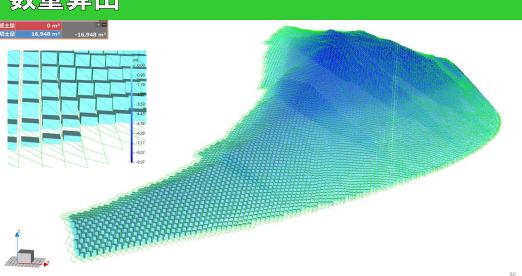
3次元設計データ

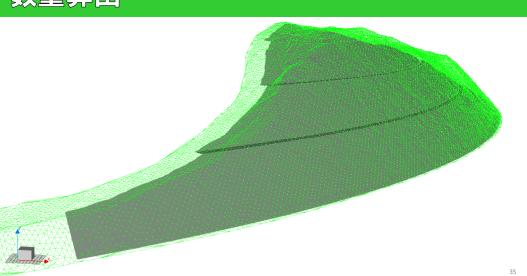

C i-Construction


数量算出




C i-Construction





数量算出

C i-Construction

数量算出

数量算出

C i-Construction

格子数	18721
格子サイズ(m)	0.5
终 子而猜(m2)	0.25

メッシュ番号(X)	メッシュ番号(Y)	中心座標(X)	中心座標(Y)	基準高	比較高	標高差	面積	切土	盛土	切盛差
8	3	9253.75	-151996.75	96.577	95.743	-0.834	0.25	0.2085	0	-0.2085
9	3	9254.25	-151996.75	96.126	95.503	-0.623	0.25	0.15575	0	-0.15575
7	4	9253.25	-151996.25	97.361	96.215	-1.146	0.25	0.2865	0	-0.2865
8	4	9253.75	-151996.25	96.939	95.975	-0.964	0.25	0.241	0	-0.241
9	4	9254.25	-151996.25	96.485	95.736	-0.749	0.25	0.18725	0	-0.18725
10	4	9254.75	-151996.25	96.095	95.496	-0.599	0.25	0.14975	0	-0.14975
7	5	9253.25	-151995.75	97.799	96.448	-1.351	0.25	0.33775	0	-0.33775
8	5	9253.75	-151995.75	97.386	96.208	-1.178	0.25	0.2945	0	-0.2945
9	5	9254.25	-151995.75	96.887	95.968	-0.919	0.25	0.22975	0	-0.22975 37

①3次元起工測量

②8次元設計データ作成

③ICT建設機械による施工

47%元出表形管理等の施工管理

多形然元データの納品

ICT建設機械

ICT建設機械

C i-Construction

ICT建設機械

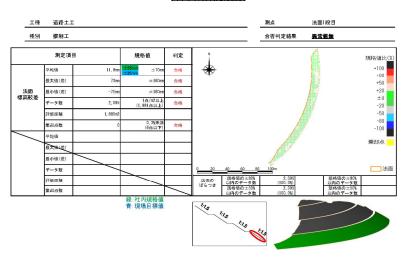
C i-Construction

ICT建設機械

ICT建設機械

ICT建設機械

- ①8次元起工测量
- ②3次元設計データ作成
- 3IFT建設機械ILL各施工
- 43次元出来形管理等の施工管理
- **多数元データの納品**


幕	章	節	条	枝番	エ 種	測	定	項目	1	規材	各値	測 定 基 準	測 定 箇 所	摘要
1 Ļ	2 ±	4 道	2	1	掘削工	基	準	高▽	7	±		施工延長40mにつき1ヶ所、延長40m 以下のものは1施工箇所につき2ヶ		
直漏	I	路土工				法長	,	Q<5	m	-	200	所。 基準高は、道路中心線及び端部で測 定。		
						724 12.		Q ≥5	m	法長	-4%	た。 ただし、「TSを用いた出来形管理要 領(土工編)」(平成24年3月29日付	X W / /	
				4届		W	w			け国官技第347号、国総公第85号)の 規定による場合は、設計図書の測点 毎。基準高は、道路中心線及び端部で 測定。	1			
				2	掘削工 (面管理の場合)					平均值	計測値	 3次元データによる出来形管理において「レーザースキャナーを用いた出来形管理要領(土工編)」、または 	● 天規部の計測点 ○ 計画部の計測点	
				平場		標高較	差	±50	±150	「空中写真測量 (無人航空機) を用い た出来形管理要領 (土工編) 」に基づ き出来形管理を実施する場合、その他				
						法面 (小段 含む)		水平また標高較		±70	±160	本基準に規定する計測精度・計測密度 を満たす計測方法により出来形管理を 実施する場合に適用する。	Pases 1 1 1 0 0	
												2. 個々の計測値の規格値には計測精度として±50mmが含まれている。		
												3. 計測は平場面と法面(小段を含む)の全面とし、全ての点で設計面と の標高較差または水平較差を算出す る。計測密度は1点/m2(平面投影面 積当たり)以上とする。	LT.	
												4. 法肩、法尻から水平方向に±5m 以内に存在する計測点は、標高較差の 評価から除く。同様に、標高方向に± 5m以内にある計測点は水平較差の評価から除く。	平塘	
												5. 評価する範囲は、連続する一つの面とすることを基本とする。規格値が変わる場合は、評価区間を分割するか、あるいは規格値の条件の最も厳しい値を採用する。		

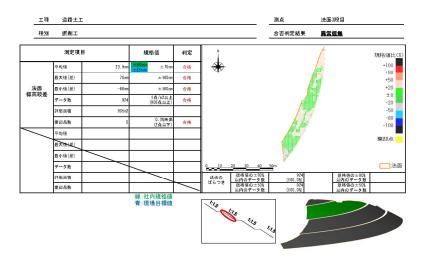
様式-31-2

出来形合否判定総括表

様式-31-2

データ数 P価面積 棄却点数

長小値(差)

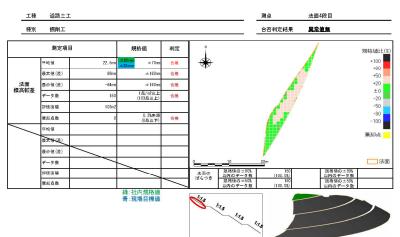

7.伍西镇 樂却点数 **C** i-Construction

_____法面

様式-31-2

<u>出来形合否判定総括表</u>

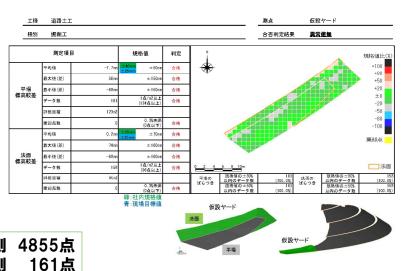
C i-Construction 様式-31-2 出来形合否判定総括表


<u>出来形合否判定総括表</u>

規格値

判定

合否判定結果

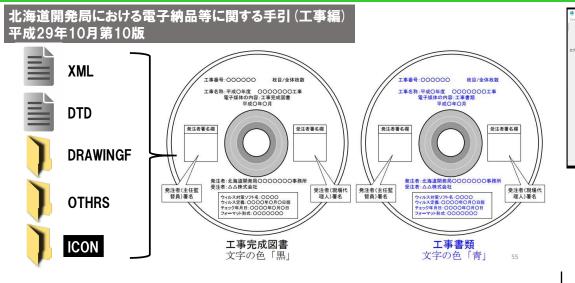

異常値無

様式-31-2

出来形合否判定総括表

法面計測 4855点 平場計測 161点

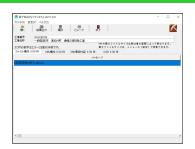
3次元出来形管理


- ①3次元起工测量
- ②3次元設計データ作成
- 3月7章歌機械[二上る施工
- **のなえた出ま形管理等の施工管理**
- ⑤3次元データの納品

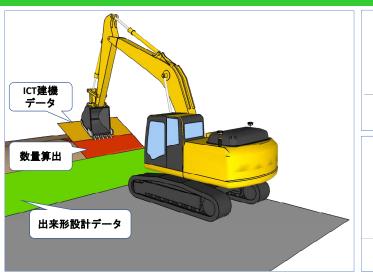
3次元データの納品

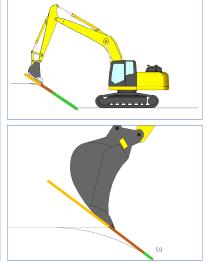
C i-Construction

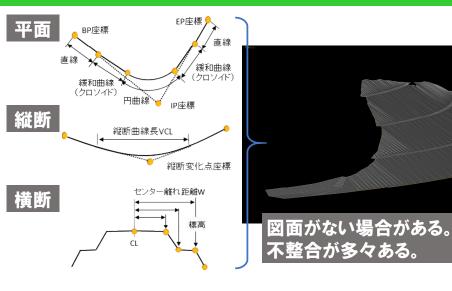
3次元データの納品


C i-Construction

3次元データの納品


考 察 事 項


考察事項


C i-Construction

考察事項

C i-Construction

考察事項

C i-Construction

基準点作成

業務成果資料を読み解き、基準点を抽出(X,Y,H)

現地にて基準点を確認

測量会社に依頼

測量成果簿提出

座標値をSIMAデータで準備

X座標	Y座標
-87987. 06481	52026. 99390
-87795. 60024	52238. 90760
-87757. 13602	52284. 13597
-87702. 60838	52395. 29770
-87690. 38689	52453. 39879

公共測量座標値は桁数が多い 入力ミスは影響が大きい

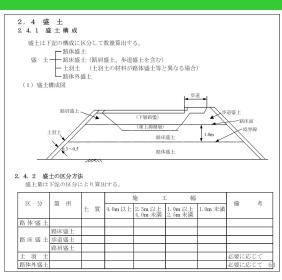
横断形状(構築形状)入力

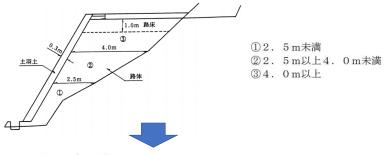
※工区外のIP点、縦断図も必要の場合も有り

IP	IP-	1	Y	1.78061 1.78									
KNO	IP-1-1	IP-1-2	τ	5" 9" 21. 94" 5"									
IA	31° 56′ 1	5. 19"	Lc	124. 55315									
R	330.0	0000	CL	243. 34103									
L	59, 39394	59.39394	Tc	124. 24776	124. 24776								
ΔR	0. 44528	0.44528	S	59. 37256	59, 37256								
XM	29. 68895	29.68895	W	94. 558	80								
X	59. 34586	59.34586	A	140.00000	140.00000								

曲線要素のみで座標値がない

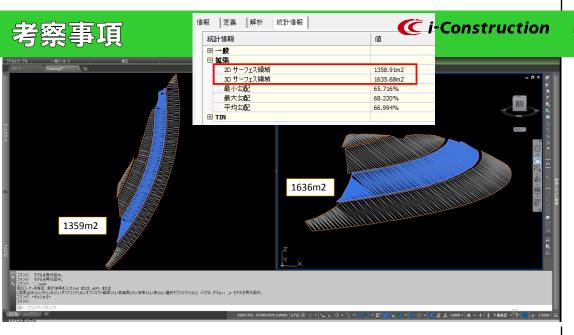
業務成果から探し出す→時間ロス


考察事項

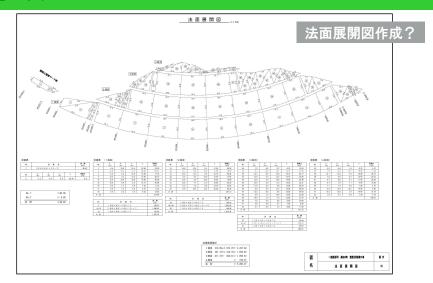


考察事項

C i-Construction



数量算出要領 1.10 3次元モデルの基本的な表現方法


(B)盛土

a) 道路

路体盛土の施工幅員(数量算出区分に応じた幅)は、サーフェスモデル等を用いて表現する。施工幅員の境界面のサーフェスモデルは、平均断面法と同様に切り出した断面で切取幅の境界線を表現し、一次比例で断面間を補完して接続し、境界面を表現する。なお、路床盛土の平均幅員((上幅+下幅)×1/2)は、測点毎に3次元モデルより断面を切り出して路床盛土の平均幅員を算出し、その結果を施工形態の属性情報とする。

考察事項

© i-Construction

考察事項

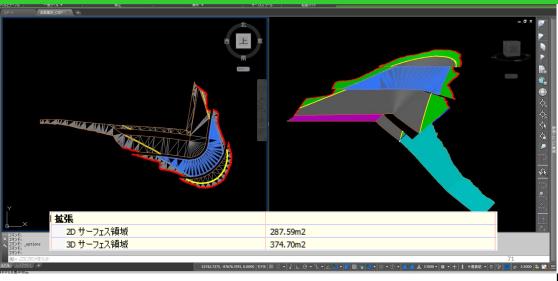
C i-Construction

章	飾	条	枝番	工 種	測	定耳	夏目	規	格	値	測定基準	測	定	簡	所	摘	要
			2	掘削工 (面管理の場合)				平均值		個々の 計測値	1. 3次元データによる出来形管理において「地上型レーザースキャナーを用いた出来形管理要領(土工編)(本)」、「空中						
					平揚	標	高較差	±50		±150	写真測量 (無人航空機) を用いた出来形管 理要領(土工編) (案) J、「無人航空機 搭載型レーザースキャナーを用いた出来形 管理要領(土工編) (案) J、「TS等光波	・ X地種の計算を ・ 本面部の計画を		2	·		
					法面 (小段 含む)		平または 高較差	±70		±160	方式を用いた出来形管理要領(土工編) (案)」、「TS (ノンブリズム方式)を用いた出来形管理要領(土工編)(案)」、 「RTK-GNSSを用いた出来形管理要領(土工編) (案)」、または「地上移動体搭載型	計劃密度 平面積 1点/m:	Í				
											レーザースキャナーを用いた出来影管理要領(土工場)(案)」に基づき出来形管理要 値(土工場)(案)」に基づき出来形管理 を面管理で実施する場合、その他本影等に 規定する計測構度。計測密度を満たす計測 方法により出来影管理を実施する場合に適 用する。	A	EN.	\	_		
											2. 個々の計測値の規格値には計測精度と して±50mmが含まれている。 3. 計測は平場面と法面(小段を含む)の	de	1	Seg			
											全面とし、全ての点で設計面との標高較差 または水平較差を算出する。計測密度は1 点/nt2 (平面投影面積当たり) 以上とす る。						
											4. 法層、法尻から水平方向に±5cm以内 に存在する計測点は、標高較差の評価から 除く。同様に、標高方向に±5cm以内にあ る計測点は水平較差の評価から除く。						
											5. 評価する範囲は、連続する一つの面と することを基本とする。規格値が変わる場 合は、評価区間を分割するか、あるいは規						

福	章	飾	条	枝番	工 種	測	定	項	B	カ	Ą	格	値	測	定	基	ä	#		測	定	施	P	F	摘	要
3 土 木	2一般施	14 法面	2	1	植生工 (種子散布工)	切土法	0 € 5m −200				0	施工延長40m 50m) につき 50m) 以下の	1 7 F	听、 延	長40)m (又信	t l									
事	施工	工			(張芝工) (筋芝工) (市松芝工)	法長し		Q≥	5m	法	長	න -	-496	2ヶ所。												
盖區		通			(植生シートエ) (植生マットエ) (植生筋エ)	盛土法		2<	5m		-100															
					(人工張芝工) (植生穴工)	長見	85	Q≧	Бm	法	長	თ-	-2%													
	2 2					延		長	L		7	- 20	0	1施工箇所每												
	般施	14 法面工	2	2	植生工 (植生基材吹付工)	法長		2<	5m		-	- 20	0	施工延長40m のものは1施					F							
事 工	共通			(客土吹付工)	l		Q≥	5m	法	長	Ø-	-496														
	121						t <	5cm			-10)	施工面積200 ml以下のもの 2ヶ所。	りは、												
					厚さ		t≧	5cm			-20)	検査孔により	測定。												
					t	最/	\吹 (博は.	面に凹凸 設計簿 計算以	[O	50															
						1E		E	L		-	- 20	n	1施工箇月	İ	4	4	Ties		n =		A-A	7	理に	- 4.	

C i-Construction

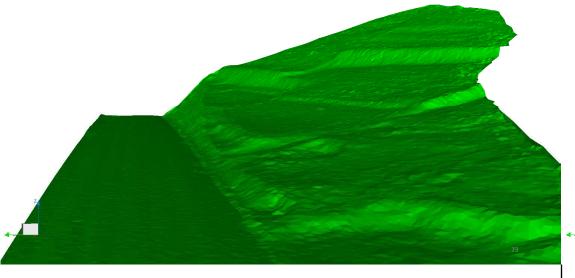
考察事項

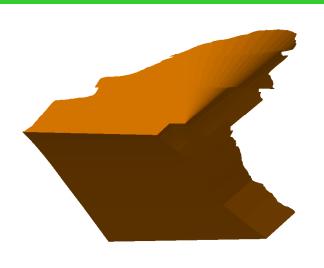


考察事項

C i-Construction

考察事項

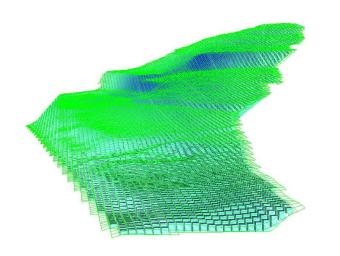



C i-Construction

考察事項

C i-Construction

74


考察事項

C i-Construction

考察事項

C i-Construction

北海道開発局 i-Constructionに関するQ&A

Q2-7 北海道の独自ルールが必要と認識しているが開発局はどのように考えているのか

A2-7 積雪時の出来形計測や軟弱地盤(泥炭)での施工管理等、北海道特有の課題 もあり検討していきたいと考えております。

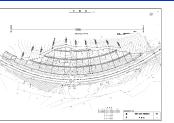
北海道開発局

■出来形管理

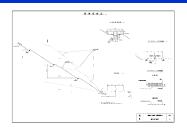
Q6-1 積雪時の出来形管理はどうしたら良いか

A 6-1 雪が積もる前に ICT 土工の対象範囲の一部だけでも3Dの出来形管理データを取得していただければ ICT 活用工事として認められます。

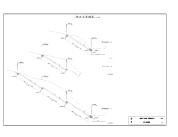
-0.95

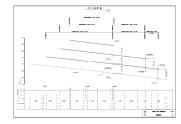

-2.84

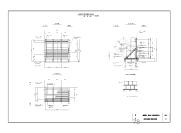
-4.74


3Dモデルによる 合意形成

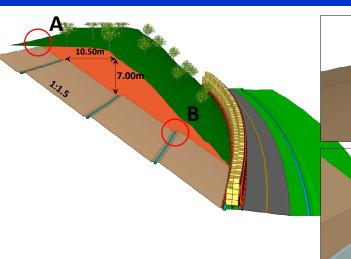
3Dモデルによる合意形成







C i-Construction




C i-Construction

3Dモデルによる合意形成 i-Construction

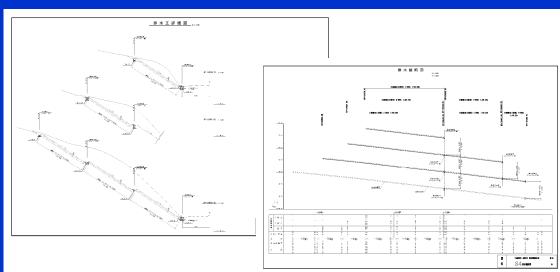
3Dモデルによる合意形成

3Dモデルによる合意形成

C i-Construction

3Dモデルによる合意形成

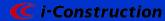
C i-Construction

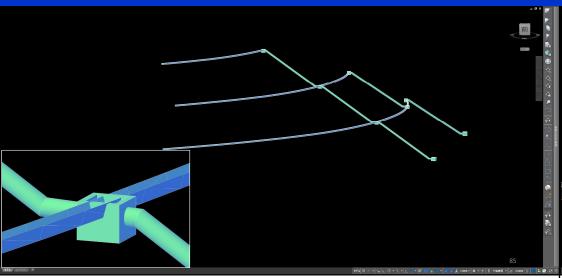


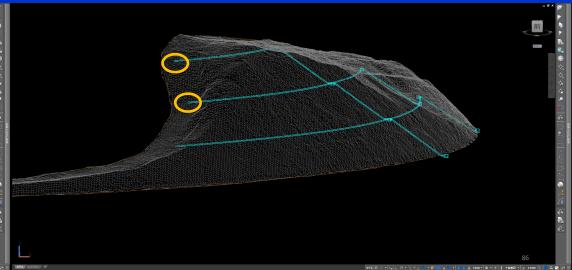
82

3Dモデルによる 設計照査

3Dモデルによる照査

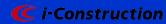

C i-Construction

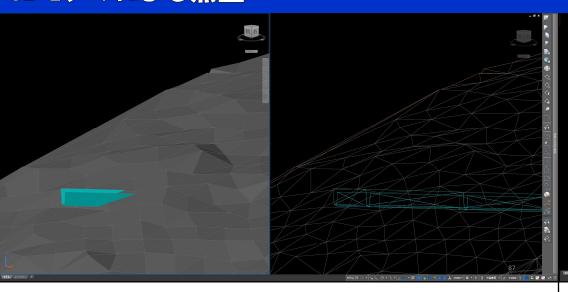


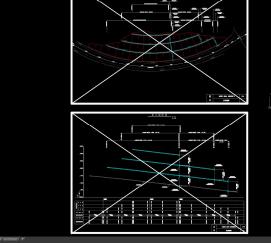


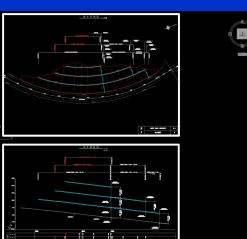
C i-Construction

3Dモデルによる照査

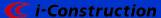





3Dモデルによる照査

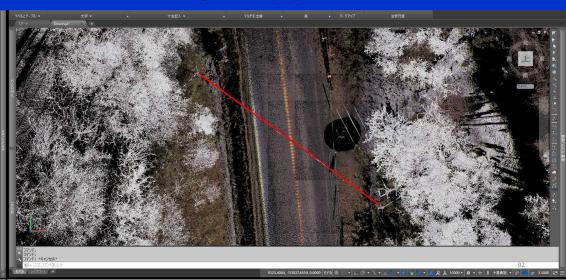

C i-Construction

3Dモデルによる照査


3Dモデルによる安全対策

3Dモデルによる安全対策

90


3Dモデルによる安全対策

3Dモデルによる安全対策

Ci-Construction

3Dモデルによる安全対策

